
Enabling BPF runtime policies for
better BPF management

 Raj Sahu Dan Williams

SIGCOMM eBPF, NYC
10th Sept, 2023

./Motivation

● BPF management is getting complicated
○ load privileges, monitoring BPF programs, access privileges …..

● BPF-orchestrators now exist to provide access control and lifecycle management of BPF
programs across clusters.

● Load Policies : hooks, pods, signature validation

● Access Policies : map R/W

2

./Motivation (cont.)

However,
Operator is unaware about performance impact of loaded BPF programs on the overall system.

3

./Motivation (cont.)

However,
Operator is unaware about performance impact of loaded BPF programs on the overall system.

● 1 High-latency program at critical hook point, or,
● Several programs in frequently used call graph

⬇

Missing SLAs

4

Therefore,

./Motivation (cont.)

5

Runtime estimation of BPF programs is a critical requirement

Therefore,

./Motivation (cont.)

6

Runtime estimation of BPF programs is a critical requirement !!!

./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator
● Evaluation
● Discussion

7

./The Idea

● BPF-verifier emits a runtime estimation as range
[best case - worst case] time

8

./The Idea

● BPF-verifier emits a runtime estimation as range
[best case - worst case] time

9

./The Idea

● BPF-verifier emits a runtime estimation as range
[best case - worst case] time

● Estimates are checked against admin-provided
Runtime Policies (latency/hook, latency/call graph)

10

./The Idea

● BPF-verifier emits a runtime estimation as range
[best case - worst case] time

● Estimates are checked against admin-provided
Runtime Policies (latency/hook, latency/call graph)

● Only allowed programs will get attached.

11

./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator
● Evaluation
● Discussion

12

./Challenges

C#1 : Helper functions are opaque
● BPF verifier cannot traverse through helpers
● Complex internal logic is abstracted away from a

BPF developer

13

./Challenges

C#2 : Multiple program paths
● Dynamic profilers don’t guarantee completeness
● Rare but costly branches can give unexpected

worst-case runtime

14

./Challenges

C#3 : Helper induced control-flow changes
● Loops, iterators

15

./Challenges

C#1 : Helper functions are opaque

C#2 : Multiple program paths

C#3 : Helper induced control-flow changes

16

./Challenges / Key Insights

C#1 : Helper functions are opaque
Key Insight ⇒ Perform dynamic measurements

C#2 : Multiple program paths
Key Insight ⇒ Utilize verifier’s in-kernel static analysis

C#3 : Helper induced control-flow changes
Key Insight ⇒ Teach verifier about special cases

17

./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator
● Evaluation
● Discussion

18

Offline measurement of helper functions

./The Runtime Estimator / Helper Timer

19

Offline measurement of helper functions

 ⬇
samples/bpf
~30 helpers
10 runs x 1000 iterations
bpf_ktime_get_ns()

…/Helper Timer

20

Offline measurement of helper functions

 ⬇
samples/bpf
~30 helpers
10 runs x 1000 iterations
bpf_ktime_get_ns()

…/Helper Timer

Fig : Best - Worst case helper runtimes (in ns) 21

./The Runtime Estimator / Branch Timer

Helper estimates + static analysis

22

For each branch :

● BPF verifier state tracks total cost.
● Helper call adds pre-calculated cost to the current

branch

When all branches get exhausted, overall best and worst
runtime is reported.

…/Branch Timer

23

map_update()

spin_lock()

./The Runtime Estimator / Special-case Handler

Adjust runtime estimates for control flow changes by
helpers

24

For bpf_loop(iter, callback_fn) :

● Calculate estimates for the callback function
(static)

● Read last known value of r1 register
● Increment cost by estimate * val(r1)

25

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are
correctly working :

26

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are
correctly working :
1. Identifying rare branches

27

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are
correctly working :
1. Identifying rare branches
2. Detect helper calls and factor-in their cost

28

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are
correctly working :
1. Identifying rare branches
2. Detect helper calls and factor-in their cost
3. Considering special cases

29

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

Runtime
Estimator [115 - 180,000,510] ns

./The Runtime Estimator / Example Run

30

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

Runtime
Estimator [115 - 180,000,510] ns

Actual
Runtime 125,013,362 ns

./The Runtime Estimator / Example Run

./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator
● Evaluation
● Discussion

31

./Evaluation

32

Linux Kernel 5.15
sysctl kernel.bpf_stats_enabled

Validating runtime estimator on sample BPF programs

./Evaluation

33

./Evaluation

34

● Best < Actual << Worst

./Evaluation

35

● Best < Actual << Worst

Harder to make runtime policies

./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator
● Evaluation
● Discussion

36

./Discussion

Helper runtime variability :

● Argument dependent
○ Length of string for printk, depth of stack for get_stackid, etc.
○ Are the parameters known at verification time ?

● Resource contention
○ BPF map based helpers use locks for concurrency-safe R/W

● Local CPU LRU lock, LRU lock, hashtab lock, remote CPU LRU lock[1]

⇒ With more concurrent access, each R/W costs higher (~4x increase for 2 CPUs)

37
1. https://www.kernel.org/doc/html/next/bpf/map_hash.html

./Discussion

Some ideas

● Port existing work of performance estimation in NFs[1,2] to Linux kernel
○ Current dynamic analysis of helper faces completeness problem

● Contention-aware performance prediction in NFs[3]

○ As only BPF program can access map, # of contending parties could be known at load time ?

38

1. Iyer, Rishabh, et al. "Performance contracts for software network functions." 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). 2019.
2. Iyer, Rishabh, Katerina Argyraki, and George Candea. "Performance interfaces for network functions." 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22). 2022.
3. Manousis, Antonis, et al. "Contention-aware performance prediction for virtualized network functions." Proceedings of the Annual conference of the ACM Special Interest Group on Data

Communication on the applications, technologies, architectures, and protocols for computer communication. 2020.

./Summary

1. Runtime estimation of BPF programs is crucial for production servers.

2. Proposed Runtime Estimator : a hybrid approach to combine dynamic measurement of
black-boxed helper functions with verifier’s static analysis of all possible branches.

3. The performance estimates were correct but challenges remain around making the
estimates more accurate.

39

THANK YOU

40

 Raj Sahu Dan Williams
raj.sahu@vt.edu djwillia@vt.edu

BACKUP SLIDES

41

./Motivation

● BPF management is getting complicated
○ load privileges, monitoring BPF programs, access privileges …..

● BPF-orchestrators now exist to provide access control and lifecycle management of BPF
programs across clusters.

42

Offline measurement of helper functions

 ⬇
samples/bpf
~30 helpers
10 runs x 1000 iterations
bpf_ktime_get_ns()

…/Helper Timer

Fig : Best - Worst - Average case helper runtimes (in ns) 43

./The Runtime Estimator / Special-case Handler

For bpf_loop(iter, callback_fn) :

● Calculate estimates for the callback function
(static)

● Read last known value of r1 register
● Increment cost by estimate * val(r1)

 bpf_loop(4, function, NULL,0);

0: r1 = 0x4
1: r2 = 0x208
3: r3 = 0x0
4: r4 = 0x0
5: call 181 <------ bpf_loop()
6: r1 = r0
7: ….
8: ..

44

