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./Motivation

● BPF management is getting complicated  
○ load privileges, monitoring BPF programs, access privileges …..

● BPF-orchestrators now exist to provide access control and lifecycle management of BPF 
programs across clusters. 

● Load Policies : hooks, pods, signature validation

● Access Policies : map R/W 
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./Motivation (cont.)

However, 
Operator is unaware about performance impact of loaded BPF programs on the overall system. 
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./Motivation (cont.)

However, 
Operator is unaware about performance impact of loaded BPF programs on the overall system. 

● 1 High-latency program at critical hook point, or,
● Several programs in frequently used call graph

⬇

Missing SLAs
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Therefore,

./Motivation (cont.)

5

Runtime estimation of BPF programs is a critical requirement 



Therefore,

./Motivation (cont.)
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Runtime estimation of BPF programs is a critical requirement !!!



./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator 
● Evaluation
● Discussion
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./The Idea

● BPF-verifier emits a runtime estimation as range  
[best case - worst case] time
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./The Idea

● BPF-verifier emits a runtime estimation as range  
[best case - worst case] time

● Estimates are checked against admin-provided 
Runtime Policies (latency/hook, latency/call graph)
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./The Idea

● BPF-verifier emits a runtime estimation as range  
[best case - worst case] time

● Estimates are checked against admin-provided 
Runtime Policies (latency/hook, latency/call graph)

● Only allowed programs will get attached. 
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./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator 
● Evaluation
● Discussion
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./Challenges

C#1 :  Helper functions are opaque
● BPF verifier cannot traverse through helpers 
● Complex internal logic is abstracted away from a 

BPF developer

13



./Challenges

C#2 :  Multiple program paths 
● Dynamic profilers don’t guarantee completeness  
● Rare but costly branches can give unexpected 

worst-case runtime 
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./Challenges

C#3 : Helper induced control-flow changes
● Loops, iterators
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./Challenges

C#1 : Helper functions are opaque 

 

C#2 : Multiple program paths

C#3 : Helper induced control-flow changes
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./Challenges / Key Insights

C#1 : Helper functions are opaque 
Key Insight ⇒ Perform dynamic measurements 
 

C#2 : Multiple program paths
Key Insight ⇒ Utilize verifier’s in-kernel static analysis

C#3 : Helper induced control-flow changes
Key Insight ⇒ Teach verifier about special cases
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./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator 
● Evaluation
● Discussion
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Offline measurement of helper functions

./The Runtime Estimator / Helper Timer
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Offline measurement of helper functions

       ⬇
samples/bpf
~30 helpers
10 runs x 1000 iterations
bpf_ktime_get_ns()

…/Helper Timer
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Offline measurement of helper functions

       ⬇
samples/bpf
~30 helpers
10 runs x 1000 iterations
bpf_ktime_get_ns()

…/Helper Timer

Fig : Best - Worst case helper runtimes (in ns) 21



./The Runtime Estimator / Branch Timer

Helper estimates + static analysis

22



For each branch : 

● BPF verifier state tracks total cost. 
● Helper call adds pre-calculated cost to the current 

branch

When all branches get exhausted, overall best and worst 
runtime is reported.  

…/Branch Timer
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map_update()

spin_lock()



./The Runtime Estimator / Special-case Handler

Adjust runtime estimates for control flow changes by 
helpers 
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For bpf_loop(iter, callback_fn) : 

● Calculate estimates for the callback function 
(static)

● Read last known value of r1 register
● Increment cost by estimate * val(r1) 
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main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are 
correctly working : 
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main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are 
correctly working :
1. Identifying rare branches 
2. Detect helper calls and factor-in their cost



28

main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

./The Runtime Estimator / Example Run

Verify whether the 3 sub-components are 
correctly working :
1. Identifying rare branches 
2. Detect helper calls and factor-in their cost
3. Considering special cases
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main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

Runtime 
Estimator [115 - 180,000,510] ns

./The Runtime Estimator / Example Run
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main():
key = rand() % 10000
if key>1:

bpf_printk(key)
else:

bpf_loop(1000, func)

func():
bpf_loop(100, simple)

simple():
bpf_printk(“Hello”)

Runtime 
Estimator [115 - 180,000,510] ns

Actual 
Runtime    125,013,362 ns

./The Runtime Estimator / Example Run



./Outline

● Motivation
● Idea
● Challenges
● Runtime Estimator 
● Evaluation
● Discussion

31



./Evaluation
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Linux Kernel 5.15
sysctl kernel.bpf_stats_enabled

Validating runtime estimator on sample BPF programs



./Evaluation
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./Evaluation
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● Best < Actual << Worst 



./Evaluation
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● Best < Actual << Worst 

Harder to make runtime policies



./Outline
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● Discussion
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./Discussion

Helper runtime variability : 

● Argument dependent 
○ Length of string for printk, depth of stack for get_stackid, etc.
○ Are the parameters known at verification time ?

● Resource contention 
○ BPF map based helpers use locks for concurrency-safe R/W 

● Local CPU LRU lock, LRU lock, hashtab lock, remote CPU LRU lock[1]

⇒ With more concurrent access, each R/W costs higher (~4x increase for 2 CPUs)
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1. https://www.kernel.org/doc/html/next/bpf/map_hash.html



./Discussion

Some ideas

● Port existing work of performance estimation in NFs[1,2] to Linux kernel
○ Current dynamic analysis of helper faces completeness problem

● Contention-aware performance prediction in NFs[3]

○ As only BPF program can access map, # of contending parties could be known at load time ? 
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./Summary

1. Runtime estimation of BPF programs is crucial for production servers. 

2. Proposed Runtime Estimator : a hybrid approach to combine dynamic measurement of 
black-boxed helper functions with verifier’s static analysis of all possible branches. 

3. The performance estimates were correct but challenges remain around making the 
estimates more accurate. 
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BACKUP SLIDES
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./Motivation

● BPF management is getting complicated  
○ load privileges, monitoring BPF programs, access privileges …..

● BPF-orchestrators now exist to provide access control and lifecycle management of BPF 
programs across clusters. 
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Offline measurement of helper functions

       ⬇
samples/bpf
~30 helpers
10 runs x 1000 iterations
bpf_ktime_get_ns()

…/Helper Timer

Fig : Best - Worst - Average case helper runtimes (in ns) 43



./The Runtime Estimator / Special-case Handler

For bpf_loop(iter, callback_fn) : 

● Calculate estimates for the callback function 
(static)

● Read last known value of r1 register
● Increment cost by estimate * val(r1) 

 bpf_loop(4, function, NULL,0);

0:   r1 = 0x4
1:   r2 = 0x208 
3:   r3 = 0x0
4:   r4 = 0x0
5:   call 181  <------ bpf_loop()
6: r1 = r0
7: …. 
8: ..
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