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BPF is Useful

Typical BPF Use Cases

● Networking
● Increased observability over the system
● Increased security
● Improve performance of systems
● Safely extend kernel



BPF is Useful on Embedded

● BPF is used for networking →  Embedded systems used at the edge for sensor networks 

● BPF is used for observability → Observability over embedded systems matters

● BPF is used to change kernel policy → Safely and dynamically change embedded behavior

New use cases will come in the future
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Verification is Expensive
● Verification grows with number of paths
● Occurs at load time, every time

● 20 to 70 times slower
● Weaker processor verifies slower
● Close to 10 seconds for 2048 paths
● BPF programs will not become simpler



Key Insight

BPF program verification need not happen at load time

● Only verify programs one time

● Can verify programs at any time

● Can spend as much CPU time as needed

We achieve this by decoupling verification



Embedded System

Decoupled Flowchart



Talk Roadmap

● Motivate BPF on embedded
○ Challenges 

○ Opportunities

● Walkthrough our decoupling design
○ Key points and design goals

● Discuss how decoupling goes beyond embedded
○ Verification as a service

○ Expanding the BPF Ecosystem
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Ensuring Kernel Compatibility
● Use the in-place Linux kernel 

verifier and JIT

● Ensure that the program would 

have been verified on embedded 

device

● Keeps all the safety properties of 

the current verifier

● Produce what would have been 

created if the embedded kernel 

verified the program



Ensuring Trust
● A user cannot trust the pre-verified 

code on its own

● Ensure trust by signing the 

pre-verified blob

● If the user trusts the verifier then 

they can load



Enabling Loading
● Helper functions and maps need to 

be relocated

● Emit metadata that specifies helper 

id and where the relocation needs 

to be done

● Maps are still in progress

● Resolve these on the embedded 

kernel



Decoupling is Deeper than Embedded

Decoupling opens up new opportunities in BPF world

● Increasing BPF program complexity 

● Verification as a service 

● Expanding the ecosystem



Raising BPF Limits

● BPF program complexity is limited by the verifier

● Techniques to bypass this are clever, but clumsy

● Separating program into smaller pieces to verify

● Decoupling allows us to increase these limits substantially

● Greatly increases the possible complexity of BPF programs



Verify Once Run Everywhere

● BPF wants to be Compile Once Run Everywhere
○ Allows for compatibility between similar kernel versions

○ Aids distribution of BPF programs

● End goal is to make it easy to load BPF programs

● With decoupled verification BPF can be Verify Once Run Everywhere
○ Extremely easy to load BPF programs

○ Computationally cheap 



Expanding Ecosystem

● Current verifier and JIT are ad-hoc

● Decoupling better enables the use of alternative verifiers and JITs

● Alternative verifiers may be better than Linux verifier
○ Better time complexity

○ Ensure different properties

● Allow experimental/architecture specific JIT 
○ Take more advantage of the specific hardware being run on



Distributed Verification



Takeaways

● BPF is useful on embedded devices

● BPF program verification does not need to be at load time

● Decoupling verification from load time allows
○ BPF programs on embedded

○ Expanded BPF ecosystem and program complexity

○ New types of services to support BPF


