Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Network Profiles for Detecting
Application-Characteristic Behavior Using Linux eBPF

Lars Wiistrich, Markus Schacherbauer, Markus Budeus, Dominik Freiherr von KiinBberg,
Sebastian Gallenmdiller, Marc-Oliver Pahl*, Georg Carle

Sunday 101 September, 2023

Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

“Chaire Cybersecurity for Critical Networked Infrastructures
Department SRCD
IMT Atlantique

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?

Complex patterns

L. Wistrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone

Complex patterns

L. Wistrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone
e No, the smartphone is not under the table

Complex patterns

L. Wistrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone
e No, the smartphone is not under the table

Complex patterns

L. Wistrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone
e No, the smartphone is not under the table

What has that to do with computer systems?
e Something can be hard to find even if we know what to look for

Complex patterns
cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wistrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone
® No, the smartphone is not under the table

What has that to do with computer systems?
e Something can be hard to find even if we know what to look for

e Complex patterns are widely spread across computer systems (cf.
kernels, network stacks)

e Relevant information may be hidden among complex patterns

e However, with the right tools, we can detect this information Complex patterns
cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wistrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

In this talk, we use eBPF ...
to enable the detection of application-characteristic network behavior

Our work addresses two main questions:

1. How can we characterize an application’s network behavior?
2. How can we efficiently associate packets and processes?

L. Wistrich — Network Profiles using Linux eBPF

3

Related eBPF Work

Related Work

Application

Cilium Hubble' and Tetragon?
Falco®
Opensnitch*

Traffic monitoring and policy enforcement
Intrusion detection
Packet filtering

Cilium Hubble. https:/github.com/cilium/hubble
Cilium Tetragon. https://github.com/cilium/tetragon
Falco. https://falco.org/

Opensnitch. https:/github.com/evilsocket/opensnitch

L. Wistrich — Network Profiles using Linux eBPF

4

Contributions

e Network application profiles
e We show that eBPF is suitable to reliably associate packets and processes
e QOur evaluation shows:

e Network profiles can identify unexpected process behavior
e eBPF allows to efficiently and reliably collect the necessary data

L. Wistrich — Network Profiles using Linux eBPF

5

Network Profiles

Characterizing Application Behavior

There are various aspects defining characteristic behavior

e Associated processes on end-hosts
e Sequences & dependencies

e Periodicity

e Flow characteristics

= There is no single method to capture all facets

L. Wistrich — Network Profiles using Linux eBPF

6

Network Profiles TI-ITI

Methods

Framework to combine methods to enable network application profiles

Characteristic Method

Associated processes Heuristic measurements, code analysis

Sequences & Dependencies Episode-, Sequential- Association Rule Mining, Markov model, config file parsing
Periodicity Periodogram, pattern mining

Flow characteristics Energy-based Flow Classifier®, frequency analysis

5 C.F Pontes et al. A new method for flow-based network intrusion detection using the inverse potts model. IEEE TNSM, 2021
L. Wistrich — Network Profiles using Linux eBPF

7

Network Profiles TI-ITI

Process

Profiler framework

Flow characteristics

Packet preprocessor — Flow extractor Dependencies Profile

Data Config Periodicity

Profile Matching

Process switches

L. Wistrich — Network Profiles using Linux eBPF

Network Profiles TI-ITI

human_name: some_application
process_profiles: # list of process profiles
- human_name: name_of_process
dependencies: # Singular dependencies
- confidence: 1.0
ip: some_ip
protecol: some_protocel
service: some_service

To build accurate network profiles, we need support: 10
dependency_rules: [] # Timing Rules between dependencies
e 3 solid data foundation flow_classifier: # Average energy values of EFC-Classifier
duration: 8.969111066022899
iati # more_keys
® an association between packets and processes v e L5 sozensaTeTTEss
i periodicity: # Pertodicity information
e complete, i. e., every packet to a process i T Y nf
o efficient, i. e., little overhead/additional load max_period: 22.3
. . X min_perioed: 26.1
= The next slides will focus on the data collection ports:

- occurred_port
process_names:
- occurred_matcher_name
protocols:
- occurred_protocol
services:
- occurred_service
process_switches: null # Switches between processes (null as a single process)

L. Wistrich — Network Profiles using Linux eBPF

Correlating Packets and Processes

Method

Heuristics

Polling

Logging

eBPF

5 H. Asai, et al. "Network application profiling with traffic causality graphs.” International Journal of Network Management (2014)
7 S.Haas et al. Zeek-osquery: Host-network correlation for advanced monitoring and intrusion detection., IFIP TC 11, 2020
8L Popa et al. Macroscope: End-point approach to networked application dependency discovery. CONEXT, 2009

9 T. Karagiannis et al. BLINC: multilevel traffic classification in the dark., ACM SIGCOMM, 2005

10's. Ma et al. Protracer: Towards practical provenance tracing by alternating between logging and tainting. NDSS, 2016

" Gilium Hubble. https:/github.com/cilium/hubble

12 Gilium Tetragon. https://github.com/cilium/tetragon

'3 Falco. https:/falco.org/

14 Opensnitch. https:/github.com/evilsocket/opensnitch

L. Wistrich — Network Profiles using Linux eBPF 10

Correlating Packets and Processes

B & & &
ed\'b' \Q;(\e. 'b'b \X\ $°
& N (\6 ‘36
i oﬂ(\Q 5 & o

Method & O (OIS
Heuristics ++ ++ ++ —— Traffic Causality Graphs®
Polling =+ - —— + Zeek-osquery’, Macroscope®, BLINC®
Logging — ++ - ++ Protracer'
eBPF - ++ + ++ Hubble'", Tetragon', Falco', Opensnitch™

H. Asai, et al. "Network application profiling with traffic causality graphs." International Journal of Network Management (2014)

L. Popa et al. Macroscope: End-point approach to networked application dependency discovery. CONEXT, 2009

6
7 S.Haas et al. Zeek-osquery: Host-network correlation for advanced monitoring and intrusion detection., IFIP TC 11, 2020
8
9

T. Karagiannis et al. BLINC: multilevel traffic classification in the dark., ACM SIGCOMM, 2005
10's. Ma et al. Protracer: Towards practical provenance tracing by alternating between logging and tainting. NDSS, 2016

" Gilium Hubble. https:/github.com/cilium/hubble

2 Gilium Tetragon. https://github.com/cilium/tetragon

'3 Falco. https:/falco.org/

4 Opensnitch. https:/github.com/evilsocket/opensnitch

L. Wistrich — Network Profiles using Linux eBPF

Matching via eBPF
Egress Matching

eBPF allows to execute additional code upon executing syscalls

Overhead Parsing
Data completeness

sendmsg

e gather information from the skb

Transport Layer
Segments/Datagrams

tcp_v4_connect

e Variety syscalls to kprobe

Network Layer
Packets

ip_queue_xmit
ip_send_reply

e Tradeoff between parsing overhead and data completeness

Data Link Layer
Frames

dev_queue_xmit

e QOur goal is data completeness

= Our egress data collection focuses on the stated Data Link Layer syscalls

dev_direct_xmit

L. Wistrich — Network Profiles using Linux eBPF 1

Matching via eBPF TUTI

Ingress Matching

e Matching ingress is more difficult than egress
e On reception, it is unclear which process will read it
e We use a set of heuristics to match ingress traffic

e flow based,
e via ICMP ID, and
e via payload in ICMP error messages.

L. Wistrich — Network Profiles using Linux eBPF 12

Matching via eBPF

Matcher Architecture

User space

Procace

Process

Kernel space

Ingress

L. Wistrich — Network Profiles using Linux eBPF

13

Matching via eBPF TUTI

Matcher Architecture

(5%
Q
<
2
2
o
g 2
=
= s 8
DProcece © 3
3 2
Process 2 I
23 AZ
E 8
PID g A
A >
28 S
[3
8 Packet assembly =]
& 2
— T 2
P [-—-- 3
£ I . S
V] —
M __dev_direct_xmit ‘ ‘ _dev_queue_xmit]
T g
| ! A
|
?
i

Ingress

L. Wistrich — Network Profiles using Linux eBPF 13

Matching via eBPF TUTI

Matcher Architecture

™ Match result
Traffic history Indirect matcher
1]
Q
g T [PID=0f
5 PID #£0 P
= 2 5
% =]
Process = =
< 5 2
Process 2 5 =
2 = ~<
< 2)
PID g A
A >
N2 S
[3
8 Packet assembly =]
& 2
— T a
g i - 2
__dev_direct_xmit ‘ ‘ _dev_queue_xmit 2
T g
| ! A
|
T
—

Ingress

L. Wistrich — Network Profiles using Linux eBPF 13

Matching via eBPF

Matcher Architecture

™ Match result ~ — Profiler
o Traffic history | Indirect matcher
Q
g f [PID=0F
5 PID # 0 -
=
= s 8
Dracace ° o 3
= 5 3
Process 2 5 =
S S E]
= é" B
PID g A
= >
N2 S
[3
8 Packet assembly =]
& 2
— T 2
Q [- 2
% [_dev_direct_xmit | | _dev_queue_xmit || 8
| &
?
i

Ingress

L. Wistrich — Network Profiles using Linux eBPF

13

Evaluation TI'ITI

e Our evaluation consists of two parts

1. profiler framework
2. matcher

e All experiments in local testbed
e All experiments automated with pos'®
e Setup: Two directly connected hosts

OS Debian Bullseye (5.10.0-8-amd64)
CPU Intel Xeon CPU D-1518 (4x2.2 GHz)
RAM 32 GB

Evaluation testbed

15 3. Gallenmiiller et al. The pos framework: A methodology and toolchain for reproducible network experiments. CoNEXT, 2021
L. Wistrich — Network Profiles using Linux eBPF 14

Evaluation

Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:

e 10x5min traces of ntpd
e Detected periodicity: 62sto 75s

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
” https://attack.mitre.org/techniques/T1036/004/
"8 https://attack.mitre.org/techniques/T1036/604/

L. Wistrich — Network Profiles using Linux eBPF

15

https://www.extrahop.com/resources/attacks/c-c-beaconing/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/004/

Evaluation

Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:

e 10x5min traces of ntpd
e Detected periodicity: 62sto 75s
Emulated attack:

beacon to C2 server every 64s'®

C2 server responds with random string
process appears as /usr/sbin/ntpd'’ '
more details in our paper

e 10x5min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
” https://attack.mitre.org/techniques/T1036/004/
"8 https://attack.mitre.org/techniques/T1036/604/

L. Wistrich — Network Profiles using Linux eBPF

15

https://www.extrahop.com/resources/attacks/c-c-beaconing/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/004/

Evaluation

Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:

e 10x5min traces of ntpd
e Detected periodicity: 62sto 75s
Emulated attack:

beacon to C2 server every 64s'®

C2 server responds with random string
process appears as /usr/sbin/ntpd'’ '
more details in our paper

e 10x5min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
” https://attack.mitre.org/techniques/T1036/004/
"8 https://attack.mitre.org/techniques/T1036/604/

/usr/sbin/ntpd:
dependencies:
dependency_match:
missing_known_dependencies: []
unknown_dependencies:
- confidence: 1.0
dst_port: 123
ip: 192.168.1.2
protocol: UDP
dependency_rules: null
flows:
match: 0.5669291338582677
periodicity:
found_periodicity: null
match: false
profile_periodicity:
confidence: 1.0
max_period: 75.26808510638298
min_period: 62.7157400156617

L. Wistrich — Network Profiles using Linux eBPF

https://www.extrahop.com/resources/attacks/c-c-beaconing/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/004/

Evaluation TuTI

Matcher Evaluation

e Goal: Identify limits of packet-process correlation
e Setup:
e trafgen for traffic generation

e generate 10000 packets/s (64 B and 1500 B)
e matching rate, memory consumption, CPU load

L. Wistrich — Network Profiles using Linux eBPF 16

Evaluation

Matcher Evaluation

e Goal: Identify limits of packet-process correlation
e Setup:
e trafgen for traffic generation

e generate 10000 packets/s (64 B and 1500 B)
e matching rate, memory consumption, CPU load

Matching Rate
® 99.9% at 60 Mbit/s
® 96.3% at 120 Mbit/s

L. Wistrich — Network Profiles using Linux eBPF

16

Evaluation

Matcher Evaluation

e Goal: Identify limits of packet-process correlation
e Setup:
e trafgen for traffic generation

e generate 10000 packets/s (64 B and 1500 B)
e matching rate, memory consumption, CPU load

@ .%_:—;.
< 60|
Matching Rate S “
® 99.9% at 60 Mbit/s £ |
[} 40
® 96.3% at 120 Mbit/s g |
Memory Consumption ET 20
e 40 MiB at 10 000 packets/s (64 B packets) =
e 68 MiB at 10 000 packets/s (1500 B packets) 0 50

I
100

| I | |
150 200 250 300
Time in seconds

—e— 64 B packets —=— 1500 B packets

L. Wistrich — Network Profiles using Linux eBPF

16

Evaluation TuTI

CPU load

1500B - I B

e Depends on the number of packets |
e Independent of packet size 64B | N

Il Il Il Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200 220 240
CPU utilization in % at 10 000 packets / s

L. Wistrich — Network Profiles using Linux eBPF 17

Contributions

e Network application profiles
e We show that eBPF is suitable to collect the necessary data
e Our evaluation shows:
* Network profiles can identify unexpected process behavior
e Our eBPF matcher is efficient and reliable
Future work
e Enhance network profiles
® Ingress matching via eBPF

Read our paper:

L. Wistrich — Network Profiles using Linux eBPF

Contributions

Energy Based Flow Classifier

e Threshold-based binary semi-supervised classifier
e Proposed by Pontes et al.'®

* Flow modelled as fully connected graph G = (V, E)
e \ertices V are features (e.g. protocol)

e Edges E combination of V

e Energy of flow: Sum of all node and edge energies

19 C. F. Pontes et al. A new method for flow-based network intrusion detection using the inverse potts model. IEEE TNSM, 2021

4

Packets
In: 3

Duration:

0.01s

Protocol:

ubpP

Packets
Out: 5

L. Wistrich — Network Profiles using Linux eBPF 19

	Motivation
	Related eBPF Work
	Contributions
	Network Profiles
	Correlating Packets and Processes
	Matching via eBPF
	Evaluation
	Contributions

