
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Network Profiles for Detecting
Application-Characteristic Behavior Using Linux eBPF

Lars Wüstrich, Markus Schacherbauer, Markus Budeus, Dominik Freiherr von Künßberg,
Sebastian Gallenmüller, Marc-Oliver Pahl*, Georg Carle

Sunday 10th September, 2023

Chair of Network Architectures and Services
School of Computation, Information, and Technology

Technical University of Munich
*Chaire Cybersecurity for Critical Networked Infrastructures

Department SRCD
IMT Atlantique



Motivation

A practical problem . . .
• Do you notice that something is off with the picture on the right?

• Hint: look for a smartphone
• No, the smartphone is not under the table

What has that to do with computer systems?

• Something can be hard to find even if we know what to look for
• Complex patterns are widely spread across computer systems (cf.

kernels, network stacks)
• Relevant information may be hidden among complex patterns
• However, with the right tools, we can detect this information

Complex patterns

cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wüstrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/


Motivation

A practical problem . . .
• Do you notice that something is off with the picture on the right?
• Hint: look for a smartphone

• No, the smartphone is not under the table

What has that to do with computer systems?

• Something can be hard to find even if we know what to look for
• Complex patterns are widely spread across computer systems (cf.

kernels, network stacks)
• Relevant information may be hidden among complex patterns
• However, with the right tools, we can detect this information

Complex patterns

cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wüstrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/


Motivation

A practical problem . . .
• Do you notice that something is off with the picture on the right?
• Hint: look for a smartphone
• No, the smartphone is not under the table

What has that to do with computer systems?

• Something can be hard to find even if we know what to look for
• Complex patterns are widely spread across computer systems (cf.

kernels, network stacks)
• Relevant information may be hidden among complex patterns
• However, with the right tools, we can detect this information

Complex patterns

cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wüstrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/


Motivation

A practical problem . . .
• Do you notice that something is off with the picture on the right?
• Hint: look for a smartphone
• No, the smartphone is not under the table

What has that to do with computer systems?

• Something can be hard to find even if we know what to look for
• Complex patterns are widely spread across computer systems (cf.

kernels, network stacks)
• Relevant information may be hidden among complex patterns
• However, with the right tools, we can detect this information

Complex patterns

cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wüstrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/


Motivation

A practical problem . . .
• Do you notice that something is off with the picture on the right?
• Hint: look for a smartphone
• No, the smartphone is not under the table

What has that to do with computer systems?
• Something can be hard to find even if we know what to look for

• Complex patterns are widely spread across computer systems (cf.
kernels, network stacks)

• Relevant information may be hidden among complex patterns
• However, with the right tools, we can detect this information

Complex patterns
cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wüstrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/


Motivation

A practical problem . . .
• Do you notice that something is off with the picture on the right?
• Hint: look for a smartphone
• No, the smartphone is not under the table

What has that to do with computer systems?
• Something can be hard to find even if we know what to look for
• Complex patterns are widely spread across computer systems (cf.

kernels, network stacks)
• Relevant information may be hidden among complex patterns
• However, with the right tools, we can detect this information Complex patterns

cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/

L. Wüstrich — Network Profiles using Linux eBPF 2

https://mymodernmet.com/rayana-lira-hidden-cell-phone/


Motivation

In this talk, we use eBPF . . .

to enable the detection of application-characteristic network behavior

Our work addresses two main questions:

1. How can we characterize an application’s network behavior?

2. How can we efficiently associate packets and processes?

L. Wüstrich — Network Profiles using Linux eBPF 3



Related eBPF Work

Related Work Application

Cilium Hubble1 and Tetragon2 Traffic monitoring and policy enforcement
Falco3 Intrusion detection
Opensnitch4 Packet filtering

1 Cilium Hubble. https://github.com/cilium/hubble
2 Cilium Tetragon. https://github.com/cilium/tetragon
3 Falco. https://falco.org/
4 Opensnitch. https://github.com/evilsocket/opensnitch

L. Wüstrich — Network Profiles using Linux eBPF 4



Contributions

• Network application profiles
• We show that eBPF is suitable to reliably associate packets and processes
• Our evaluation shows:

• Network profiles can identify unexpected process behavior
• eBPF allows to efficiently and reliably collect the necessary data

L. Wüstrich — Network Profiles using Linux eBPF 5



Network Profiles
Characterizing Application Behavior

There are various aspects defining characteristic behavior

• Associated processes on end-hosts
• Sequences & dependencies
• Periodicity
• Flow characteristics

⇒ There is no single method to capture all facets

L. Wüstrich — Network Profiles using Linux eBPF 6



Network Profiles
Methods

Framework to combine methods to enable network application profiles

Characteristic Method

Associated processes Heuristic measurements, code analysis
Sequences & Dependencies Episode-, Sequential- Association Rule Mining, Markov model, config file parsing
Periodicity Periodogram, pattern mining
Flow characteristics Energy-based Flow Classifier5, frequency analysis

5 C. F. Pontes et al. A new method for flow-based network intrusion detection using the inverse potts model. IEEE TNSM, 2021
L. Wüstrich — Network Profiles using Linux eBPF 7



Network Profiles
Process

Profiler framework

Data

Packet preprocessor Flow extractor Dependencies

Flow characteristics

Periodicity

Process switches

Config

Profile

Profile Matching

L. Wüstrich — Network Profiles using Linux eBPF 8



Network Profiles

To build accurate network profiles, we need
• a solid data foundation
• an association between packets and processes

• complete, i. e., every packet to a process
• efficient, i. e., little overhead/additional load

⇒ The next slides will focus on the data collection

L. Wüstrich — Network Profiles using Linux eBPF 9



Correlating Packets and Processes

Method Im
plementatio

n

Completeness

Ove
rhead

Ground tru
th

Related Work

Heuristics

++ ++ ++ −− Traffic Causality Graphs6

Polling

++ −− −− + Zeek-osquery7, Macroscope8, BLINC9

Logging

− ++ − ++ Protracer10

eBPF

− ++ + ++ Hubble11, Tetragon12, Falco13, Opensnitch14

6 H. Asai, et al. "Network application profiling with traffic causality graphs." International Journal of Network Management (2014)
7 S. Haas et al. Zeek-osquery: Host-network correlation for advanced monitoring and intrusion detection., IFIP TC 11, 2020
8 L. Popa et al. Macroscope: End-point approach to networked application dependency discovery. CoNEXT, 2009
9 T. Karagiannis et al. BLINC: multilevel traffic classification in the dark., ACM SIGCOMM, 2005
10 S. Ma et al. Protracer: Towards practical provenance tracing by alternating between logging and tainting. NDSS, 2016
11 Cilium Hubble. https://github.com/cilium/hubble
12 Cilium Tetragon. https://github.com/cilium/tetragon
13 Falco. https://falco.org/
14 Opensnitch. https://github.com/evilsocket/opensnitch

L. Wüstrich — Network Profiles using Linux eBPF 10



Correlating Packets and Processes

Method Im
plementatio

n

Completeness

Ove
rhead

Ground tru
th

Related Work

Heuristics ++ ++ ++ −− Traffic Causality Graphs6

Polling ++ −− −− + Zeek-osquery7, Macroscope8, BLINC9

Logging − ++ − ++ Protracer10

eBPF − ++ + ++ Hubble11, Tetragon12, Falco13, Opensnitch14

6 H. Asai, et al. "Network application profiling with traffic causality graphs." International Journal of Network Management (2014)
7 S. Haas et al. Zeek-osquery: Host-network correlation for advanced monitoring and intrusion detection., IFIP TC 11, 2020
8 L. Popa et al. Macroscope: End-point approach to networked application dependency discovery. CoNEXT, 2009
9 T. Karagiannis et al. BLINC: multilevel traffic classification in the dark., ACM SIGCOMM, 2005
10 S. Ma et al. Protracer: Towards practical provenance tracing by alternating between logging and tainting. NDSS, 2016
11 Cilium Hubble. https://github.com/cilium/hubble
12 Cilium Tetragon. https://github.com/cilium/tetragon
13 Falco. https://falco.org/
14 Opensnitch. https://github.com/evilsocket/opensnitch

L. Wüstrich — Network Profiles using Linux eBPF 10



Matching via eBPF
Egress Matching

• eBPF allows to execute additional code upon executing syscalls
• gather information from the skb

• Variety syscalls to kprobe

• Tradeoff between parsing overhead and data completeness
• Our goal is data completeness

Transport Layer
Segments/Datagrams

Network Layer
Packets

Data Link Layer
Frames

sendmsg
tcp_v4_connect

...

ip_queue_xmit
ip_send_reply

...

dev_queue_xmit
dev_direct_xmit

...

Overhead Parsing
Data completeness

⇒ Our egress data collection focuses on the stated Data Link Layer syscalls

L. Wüstrich — Network Profiles using Linux eBPF 11



Matching via eBPF
Ingress Matching

• Matching ingress is more difficult than egress
• On reception, it is unclear which process will read it
• We use a set of heuristics to match ingress traffic

• flow based,
• via ICMP ID, and
• via payload in ICMP error messages.

L. Wüstrich — Network Profiles using Linux eBPF 12



Matching via eBPF
Matcher Architecture

Process

PID
Process

PID

U
se

r
sp

ac
e

K
er

ne
l

sp
ac

e

Packet assembly

Pa
ck

et
di

sa
ss

em
bl

y

dev direct xmit dev queue xmit

N
IC

Physical interface
Egress Ingress

L. Wüstrich — Network Profiles using Linux eBPF 13



Matching via eBPF
Matcher Architecture

Process

PID
Process

PID

U
se

r
sp

ac
e

U
nm

at
ch

ed
ev

en
ts

Pa
ck

et
bu

ff
er

K
er

ne
l

sp
ac

e

Packet assembly

Pa
ck

et
di

sa
ss

em
bl

y

dev direct xmit dev queue xmit

N
IC

Physical interface
Egress Ingress

L. Wüstrich — Network Profiles using Linux eBPF 13



Matching via eBPF
Matcher Architecture

Process

PID
Process

PID

U
se

r
sp

ac
e

U
nm

at
ch

ed
ev

en
ts

Pa
ck

et
bu

ff
er

Indirect matcherTraffic history

Match result

K
er

ne
l

sp
ac

e

Packet assembly

Pa
ck

et
di

sa
ss

em
bl

y

dev direct xmit dev queue xmit

N
IC

Physical interface

M
at

ch
er

Egress Ingress

PID 6= 0
PID = 0

L. Wüstrich — Network Profiles using Linux eBPF 13



Matching via eBPF
Matcher Architecture

Process

PID
Process

PID

U
se

r
sp

ac
e

U
nm

at
ch

ed
ev

en
ts

Pa
ck

et
bu

ff
er

Indirect matcherTraffic history

Match result Profiler

K
er

ne
l

sp
ac

e

Packet assembly

Pa
ck

et
di

sa
ss

em
bl

y

dev direct xmit dev queue xmit

N
IC

Physical interface

M
at

ch
er

Egress Ingress

PID 6= 0
PID = 0

L. Wüstrich — Network Profiles using Linux eBPF 13



Evaluation

• Our evaluation consists of two parts
1. profiler framework
2. matcher

• All experiments in local testbed
• All experiments automated with pos15

• Setup: Two directly connected hosts
OS Debian Bullseye (5.10.0-8-amd64)

CPU Intel Xeon CPU D-1518 (4×2.2 GHz)
RAM 32 GB

Evaluation testbed

15 S. Gallenmüller et al. The pos framework: A methodology and toolchain for reproducible network experiments. CoNEXT, 2021
L. Wüstrich — Network Profiles using Linux eBPF 14



Evaluation
Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:
• 10×5 min traces of ntpd
• Detected periodicity: 62 s to 75 s

Emulated attack:
• beacon to C2 server every 64 s16

• C2 server responds with random string
• process appears as /usr/sbin/ntpd17 18

• more details in our paper

• 10×5 min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
17 https://attack.mitre.org/techniques/T1036/004/
18 https://attack.mitre.org/techniques/T1036/004/

L. Wüstrich — Network Profiles using Linux eBPF 15

https://www.extrahop.com/resources/attacks/c-c-beaconing/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/004/


Evaluation
Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:
• 10×5 min traces of ntpd
• Detected periodicity: 62 s to 75 s

Emulated attack:
• beacon to C2 server every 64 s16

• C2 server responds with random string
• process appears as /usr/sbin/ntpd17 18

• more details in our paper

• 10×5 min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
17 https://attack.mitre.org/techniques/T1036/004/
18 https://attack.mitre.org/techniques/T1036/004/

L. Wüstrich — Network Profiles using Linux eBPF 15

https://www.extrahop.com/resources/attacks/c-c-beaconing/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/004/


Evaluation
Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:
• 10×5 min traces of ntpd
• Detected periodicity: 62 s to 75 s

Emulated attack:
• beacon to C2 server every 64 s16

• C2 server responds with random string
• process appears as /usr/sbin/ntpd17 18

• more details in our paper

• 10×5 min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
17 https://attack.mitre.org/techniques/T1036/004/
18 https://attack.mitre.org/techniques/T1036/004/

L. Wüstrich — Network Profiles using Linux eBPF 15

https://www.extrahop.com/resources/attacks/c-c-beaconing/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/004/


Evaluation
Matcher Evaluation

• Goal: Identify limits of packet-process correlation
• Setup:

• trafgen for traffic generation
• generate 10 000 packets/s (64 B and 1500 B)
• matching rate, memory consumption, CPU load

Matching Rate
• 99.9% at 60 Mbit/s
• 96.3% at 120 Mbit/s

Memory Consumption
• 40 MiB at 10 000 packets/s (64 B packets)
• 68 MiB at 10 000 packets/s (1500 B packets) 0 50 100 150 200 250 300

20

40

60

Time in seconds

M
em

or
y

us
ag

e
in

10
00

K
iB

64 B packets 1500 B packets

L. Wüstrich — Network Profiles using Linux eBPF 16



Evaluation
Matcher Evaluation

• Goal: Identify limits of packet-process correlation
• Setup:

• trafgen for traffic generation
• generate 10 000 packets/s (64 B and 1500 B)
• matching rate, memory consumption, CPU load

Matching Rate
• 99.9% at 60 Mbit/s
• 96.3% at 120 Mbit/s

Memory Consumption
• 40 MiB at 10 000 packets/s (64 B packets)
• 68 MiB at 10 000 packets/s (1500 B packets) 0 50 100 150 200 250 300

20

40

60

Time in seconds

M
em

or
y

us
ag

e
in

10
00

K
iB

64 B packets 1500 B packets

L. Wüstrich — Network Profiles using Linux eBPF 16



Evaluation
Matcher Evaluation

• Goal: Identify limits of packet-process correlation
• Setup:

• trafgen for traffic generation
• generate 10 000 packets/s (64 B and 1500 B)
• matching rate, memory consumption, CPU load

Matching Rate
• 99.9% at 60 Mbit/s
• 96.3% at 120 Mbit/s

Memory Consumption
• 40 MiB at 10 000 packets/s (64 B packets)
• 68 MiB at 10 000 packets/s (1500 B packets) 0 50 100 150 200 250 300

20

40

60

Time in seconds

M
em

or
y

us
ag

e
in

10
00

K
iB

64 B packets 1500 B packets

L. Wüstrich — Network Profiles using Linux eBPF 16



Evaluation
CPU load

• Depends on the number of packets
• Independent of packet size

0 20 40 60 80 100 120 140 160 180 200 220 240

64 B

1500 B

CPU utilization in % at 10 000 packets / s

L. Wüstrich — Network Profiles using Linux eBPF 17



Contributions

• Network application profiles
• We show that eBPF is suitable to collect the necessary data
• Our evaluation shows:

• Network profiles can identify unexpected process behavior
• Our eBPF matcher is efficient and reliable

Future work
• Enhance network profiles
• Ingress matching via eBPF

Read our paper:

Code of eBPF matcher:

L. Wüstrich — Network Profiles using Linux eBPF 18



Contributions
Energy Based Flow Classifier

• Threshold-based binary semi-supervised classifier
• Proposed by Pontes et al.19

• Flow modelled as fully connected graph G = (V , E)

• Vertices V are features (e. g. protocol)
• Edges E combination of V

• Energy of flow: Sum of all node and edge energies

Duration:
0.01s

Packets 
In: 3

Bytes
Out: 600

Packets 
Out: 5

Bytes
In: 210

Protocol:
UDP

2

34

2

1 5

21

21

52

19 C. F. Pontes et al. A new method for flow-based network intrusion detection using the inverse potts model. IEEE TNSM, 2021 L. Wüstrich — Network Profiles using Linux eBPF 19


	Motivation
	Related eBPF Work
	Contributions
	Network Profiles
	Correlating Packets and Processes
	Matching via eBPF
	Evaluation
	Contributions

