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Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?

Complex patterns

L. Wistrich — Network Profiles using Linux eBPF 2


https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone

Complex patterns

L. Wistrich — Network Profiles using Linux eBPF 2


https://mymodernmet.com/rayana-lira-hidden-cell-phone/

Motivation
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e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone
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Motivation
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What has that to do with computer systems?
e Something can be hard to find even if we know what to look for
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Motivation

A practical problem ...
e Do you notice that something is off with the picture on the right?
e Hint: look for a smartphone
® No, the smartphone is not under the table

What has that to do with computer systems?
e Something can be hard to find even if we know what to look for

e Complex patterns are widely spread across computer systems (cf.
kernels, network stacks)

e Relevant information may be hidden among complex patterns

e However, with the right tools, we can detect this information Complex patterns
cf. https://mymodernmet.com/rayana-lira-hidden-cell-phone/
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Motivation

In this talk, we use eBPF ...
to enable the detection of application-characteristic network behavior

Our work addresses two main questions:

1. How can we characterize an application’s network behavior?
2. How can we efficiently associate packets and processes?
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Related eBPF Work

Related Work

Application

Cilium Hubble' and Tetragon?
Falco®
Opensnitch*

Traffic monitoring and policy enforcement
Intrusion detection
Packet filtering

Cilium Hubble. https:/github.com/cilium/hubble
Cilium Tetragon. https://github.com/cilium/tetragon
Falco. https://falco.org/

Opensnitch. https:/github.com/evilsocket/opensnitch
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Contributions

e Network application profiles
e We show that eBPF is suitable to reliably associate packets and processes
e QOur evaluation shows:

e Network profiles can identify unexpected process behavior
e eBPF allows to efficiently and reliably collect the necessary data
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Network Profiles

Characterizing Application Behavior

There are various aspects defining characteristic behavior

e Associated processes on end-hosts
e Sequences & dependencies

e Periodicity

e Flow characteristics

= There is no single method to capture all facets
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Network Profiles TI-ITI

Methods

Framework to combine methods to enable network application profiles

Characteristic Method

Associated processes Heuristic measurements, code analysis

Sequences & Dependencies  Episode-, Sequential- Association Rule Mining, Markov model, config file parsing
Periodicity Periodogram, pattern mining

Flow characteristics Energy-based Flow Classifier®, frequency analysis

5 C.F Pontes et al. A new method for flow-based network intrusion detection using the inverse potts model. IEEE TNSM, 2021
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Network Profiles TI-ITI

Process

Profiler framework

Flow characteristics

Packet preprocessor —  Flow extractor Dependencies Profile

Data Config Periodicity

Profile Matching

Process switches
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Network Profiles TI-ITI

human_name: some_application
process_profiles: # list of process profiles
- human_name: name_of_process
dependencies: # Singular dependencies
- confidence: 1.0
ip: some_ip
protecol: some_protocel
service: some_service

To build accurate network profiles, we need support: 10
dependency_rules: [] # Timing Rules between dependencies
e 3 solid data foundation flow_classifier: # Average energy values of EFC-Classifier
duration: 8.969111066022899
iati # more_keys
® an association between packets and processes v e L5 sozensaTeTTEss
i periodicity: # Pertodicity information
e complete, i. e., every packet to a process i T Y nf
o efficient, i. e., little overhead/additional load max_period: 22.3
. . X min_perioed: 26.1
= The next slides will focus on the data collection ports:

- occurred_port
process_names:
- occurred_matcher_name
protocols:
- occurred_protocol
services:
- occurred_service
process_switches: null # Switches between processes (null as a single process)
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Correlating Packets and Processes

Method

Heuristics

Polling

Logging

eBPF

5 H. Asai, et al. "Network application profiling with traffic causality graphs.” International Journal of Network Management (2014)
7 S.Haas et al. Zeek-osquery: Host-network correlation for advanced monitoring and intrusion detection., IFIP TC 11, 2020
8L Popa et al. Macroscope: End-point approach to networked application dependency discovery. CONEXT, 2009

9 T. Karagiannis et al. BLINC: multilevel traffic classification in the dark., ACM SIGCOMM, 2005

10's. Ma et al. Protracer: Towards practical provenance tracing by alternating between logging and tainting. NDSS, 2016

" Gilium Hubble. https:/github.com/cilium/hubble

12 Gilium Tetragon. https://github.com/cilium/tetragon

'3 Falco. https:/falco.org/

14 Opensnitch. https:/github.com/evilsocket/opensnitch
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Correlating Packets and Processes

B & & &
ed\'b' \Q;(\e. 'b'b \X\ $°
& N (\6 ‘36
i oﬂ(\Q 5 & o

Method & O (OIS
Heuristics  ++  ++ ++ —— Traffic Causality Graphs®
Polling =+ - —— + Zeek-osquery’, Macroscope®, BLINC®
Logging — ++ - ++  Protracer'
eBPF - ++ + ++  Hubble'", Tetragon', Falco', Opensnitch™

H. Asai, et al. "Network application profiling with traffic causality graphs." International Journal of Network Management (2014)

L. Popa et al. Macroscope: End-point approach to networked application dependency discovery. CONEXT, 2009

6
7 S.Haas et al. Zeek-osquery: Host-network correlation for advanced monitoring and intrusion detection., IFIP TC 11, 2020
8
9

T. Karagiannis et al. BLINC: multilevel traffic classification in the dark., ACM SIGCOMM, 2005
10's. Ma et al. Protracer: Towards practical provenance tracing by alternating between logging and tainting. NDSS, 2016

" Gilium Hubble. https:/github.com/cilium/hubble

2 Gilium Tetragon. https://github.com/cilium/tetragon

'3 Falco. https:/falco.org/

4 Opensnitch. https:/github.com/evilsocket/opensnitch
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Matching via eBPF
Egress Matching

eBPF allows to execute additional code upon executing syscalls

Overhead Parsing
Data completeness

sendmsg

e gather information from the skb

Transport Layer
Segments/Datagrams

tcp_v4_connect

e Variety syscalls to kprobe

Network Layer
Packets

ip_queue_xmit
ip_send_reply

e Tradeoff between parsing overhead and data completeness

Data Link Layer
Frames

dev_queue_xmit

e QOur goal is data completeness

= Our egress data collection focuses on the stated Data Link Layer syscalls

dev_direct_xmit
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Matching via eBPF TUTI

Ingress Matching

e Matching ingress is more difficult than egress
e On reception, it is unclear which process will read it
e We use a set of heuristics to match ingress traffic

e flow based,
e via ICMP ID, and
e via payload in ICMP error messages.
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Matching via eBPF

Matcher Architecture

User space

Procace

Process

Kernel space

Ingress
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Matching via eBPF TUTI

Matcher Architecture
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Matching via eBPF TUTI

Matcher Architecture
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Matching via eBPF

Matcher Architecture
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Evaluation TI'ITI

e Our evaluation consists of two parts

1. profiler framework
2. matcher

e All experiments in local testbed
e All experiments automated with pos'®
e Setup: Two directly connected hosts

OS Debian Bullseye (5.10.0-8-amd64)
CPU Intel Xeon CPU D-1518 (4x2.2 GHz)
RAM 32 GB

Evaluation testbed

15 3. Gallenmiiller et al. The pos framework: A methodology and toolchain for reproducible network experiments. CoNEXT, 2021
L. Wistrich — Network Profiles using Linux eBPF 14



Evaluation

Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:

e 10x5min traces of ntpd
e Detected periodicity: 62sto 75s

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
” https://attack.mitre.org/techniques/T1036/004/
"8 https://attack.mitre.org/techniques/T1036/604/
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Evaluation

Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:

e 10x5min traces of ntpd
e Detected periodicity: 62sto 75s
Emulated attack:

beacon to C2 server every 64s'®

C2 server responds with random string
process appears as /usr/sbin/ntpd'’ '
more details in our paper

e 10x5min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
” https://attack.mitre.org/techniques/T1036/004/
"8 https://attack.mitre.org/techniques/T1036/604/
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Evaluation

Profiler Evaluation

Goal: Identifying Command and Control (C2) botnet traffic mimicking ntpd
Ground truth:

e 10x5min traces of ntpd
e Detected periodicity: 62sto 75s
Emulated attack:

beacon to C2 server every 64s'®

C2 server responds with random string
process appears as /usr/sbin/ntpd'’ '
more details in our paper

e 10x5min traces during botnet activity

16 https://www.extrahop.com/resources/attacks/c-c-beaconing/
” https://attack.mitre.org/techniques/T1036/004/
"8 https://attack.mitre.org/techniques/T1036/604/

/usr/sbin/ntpd:
dependencies:
dependency_match:
missing_known_dependencies: []
unknown_dependencies:
- confidence: 1.0
dst_port: 123
ip: 192.168.1.2
protocol: UDP
dependency_rules: null
flows:
match: 0.5669291338582677
periodicity:
found_periodicity: null
match: false
profile_periodicity:
confidence: 1.0
max_period: 75.26808510638298
min_period: 62.7157400156617
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Evaluation TuTI

Matcher Evaluation

e Goal: Identify limits of packet-process correlation
e Setup:
e trafgen for traffic generation

e generate 10000 packets/s (64 B and 1500 B)
e matching rate, memory consumption, CPU load

L. Wistrich — Network Profiles using Linux eBPF 16



Evaluation

Matcher Evaluation

e Goal: Identify limits of packet-process correlation
e Setup:
e trafgen for traffic generation

e generate 10000 packets/s (64 B and 1500 B)
e matching rate, memory consumption, CPU load

Matching Rate
® 99.9% at 60 Mbit/s
® 96.3% at 120 Mbit/s

L. Wistrich — Network Profiles using Linux eBPF

16



Evaluation

Matcher Evaluation

e Goal: Identify limits of packet-process correlation
e Setup:
e trafgen for traffic generation

e generate 10000 packets/s (64 B and 1500 B)
e matching rate, memory consumption, CPU load
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Evaluation TuTI

CPU load

1500B - I B

e Depends on the number of packets |
e Independent of packet size 64B | N

Il Il Il Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200 220 240
CPU utilization in % at 10 000 packets / s
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Contributions

e Network application profiles
e We show that eBPF is suitable to collect the necessary data
e Our evaluation shows:
* Network profiles can identify unexpected process behavior
e Our eBPF matcher is efficient and reliable
Future work
e Enhance network profiles
® Ingress matching via eBPF

Read our paper:

L. Wistrich — Network Profiles using Linux eBPF



Contributions

Energy Based Flow Classifier

e Threshold-based binary semi-supervised classifier
e Proposed by Pontes et al.'®

* Flow modelled as fully connected graph G = (V, E)
e \ertices V are features (e.g. protocol)

e Edges E combination of V

e Energy of flow: Sum of all node and edge energies

19 C. F. Pontes et al. A new method for flow-based network intrusion detection using the inverse potts model. IEEE TNSM, 2021

4

Packets
In: 3

Duration:

0.01s

Protocol:

ubpP

Packets
Out: 5
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