
Unleashing Unprivileged
eBPF Potential with

Dynamic Sandboxing
Soo Yee Lim (UBC), Xueyuan Han (WFU), Thomas Pasquier (UBC)

1

eBPF Improves Kernel Extensibility

2

Cilium
eBPF-based Networking,

Security, and Observability

Falco
Cloud Native

Runtime Security

Katran
High Performance

Layer-4 Load balancer

Pixie
Scriptable observability

for Kubernetes

These tools cannot be used by unprivileged users.

Content
Overview

• Problem
• Related Work
• Our Solution
• Evaluation Results
• Future Work
• Conclusion

3

4

eBPF ensures safety via
the eBPF Verifier

5

But…
Is the safety of eBPF programs
always guaranteed at runtime?

A Summary of eBPF CVEs (2010-2023)​

eBPF Verifier
64%

JIT Compiler
7%

Miscellaneous
29%

6

Trick the verifier into
trusting a malicious

eBPF program.

Implication of eBPF Vulnerabilities
• CVE-2021-3490: The eBPF verifier’s ALU32 bounds tracking for bitwise

ops (AND, OR and XOR) did not properly update 32-bit bounds.

7

What the static verifier believes the program is doing:

eBPF
Program

Address space of
an eBPF program

Accesses are
within bound

Implication of eBPF Vulnerabilities
• CVE-2021-3490: The eBPF verifier’s ALU32 bounds tracking for bitwise

ops (AND, OR and XOR) did not properly update 32-bit bounds.

8

What actually happens during runtime:

eBPF
Program

Address space of
an eBPF program

Research Problem

9

The eBPF verifier alone
does not

guarantee runtime safety.

Content
Overview

• Problem
• Related Work
• Our Solution
• Evaluation Results
• Future Work
• Conclusion

10

Disable Unprivileged eBPF
• Many Linux distributions (e.g., Ubuntu, SUSE) disable

unprivileged eBPF by default to prevent unprivileged
users from exploiting eBPF vulnerabilities.

11

Unprivileged users cannot use eBPF
to customize policies for a particular

application or container.

Formally Verifying the eBPF Verifier
• Formally verifying that the eBPF verifier can ensure

that it correctly implements the specification.

12

The size and complexity of the eBPF verifier
makes it difficult to formally verify

the verifier in its entirety.

The Evolution of the Verifier’s Size

13

The size of the eBPF verifier
has more than doubled in
the last four years.

No existing work has
managed to formally verify
the verifier in its entirety.

Rust-based eBPF
• Rust-based eBPF replaces the eBPF verifier with the

Rust tool-chain to perform static checks (e.g., memory
safety).

14

eBPF programs can exploit vulnerabilities
in the Rust verifier

to violate safety at runtime.

Content
Overview

• Problem
• Related Work
• Our Solution
• Evaluation Results
• Future Work
• Conclusion

15

Threat Model

eBPF Program

OS Kernel

eBPF Program

Unprivileged adversary capable
of exploiting eBPF vulnerabilities
to achieve out-of-bounds access
within kernel memory.

Untrusted

Trusted

The kernel is assumed benign
and side-channel attacks are
considered orthogonal.

16

SandBPF: Dynamically Sandboxed eBPF

eBPF Domain

Code Region

Sandbox Memory

eBPF Stack

eBPF Context

Call Capabilities
(Helper Functions)

read/write

Address Masking
(Memory Safety)

Redirect Calls to Trampoline
(Control Flow Integrity)

17

SandBPF Is Minimally Invasive

Clang
Compiler

eBPF
Program

eBPF
Bytecode

eBPF
Native
Code

eBPF
Verifier

JIT
Compiler

eBPF
Maps

Userspace
Process

eBPF
Hook

User Space

Kernel

Binary
Rewriting

We reuse existing eBPF
pipeline and extend only

what is necessary.

18

Memory Safety

19

Sandbox Management

20

Sandbox Memory

eBPF Stack

eBPF Context

A region of memory (the sandbox) is
pre-allocated to store the data of an eBPF program.

Address Masking

21

and_mask = 0xFFF; or_mask = 0xA000
eBPF Domain

Code Region

Sandbox Memory

eBPF Stack

eBPF Context

read/write

addr = 0xA000
len = 4096 bytes

Consider an invalid memory access at address 0xB123

0xB123

and 0x0FFF

0x0123

or 0xA000

0xA123

All memory accesses always fall within
the bounds of an eBPF sandbox.

Control Flow Integrity

22

Call Capabilities
• At load time, we associate each eBPF program type

with a set of capabilities corresponding to the helper
functions it is allowed to call.

• The capabilities are stored in a hash table to provide
O(1) search time.

23

Redirect Control Transfers to Trampoline

24

eBPF
Program

call 0xffffffff12345678 <ebpf_helper>

Without Dynamic Sandboxing

eBPF
Program

call 0xffffffff24681357 <trampoline>

With Dynamic Sandboxing

Check if the eBPF program has capability
for the call target at runtime

yes

Proceeds
execution at

the call target

no

Return without
transferring control

to the intended
destination

Recap: SandBPF
eBPF Domain

Code Region

Private Memory

eBPF Stack

eBPF Context

Call Capabilities
(Helper Functions)

read/write

Address Masking
(Memory Safety)

Redirect Calls to Trampoline
(Control Flow Integrity)

25

Content
Overview

• Problem
• Related Work
• Our Solution
• Evaluation Results
• Future Work
• Conclusion

26

Breakdown of SandBPF Overhead

27

Breakdown of SandBPF Overhead

28

Sandbox Management
Constant overhead upon

each eBPF invocation.

Memory Access &
Control Flow Integrity
Overhead scales with

the complexity of
eBPF programs.

Macro-benchmark

29

SandBPF incurs no
more than 10%

overhead in terms of
network throughput.

Security Evaluation

30

• We tested SandBPF against CVE-2021-3490 and
CVE-2021-4204:

• Both results in arbitrary read/write in the kernel.
• Both can be exploited to escalate privileges.

SandBPF successfully prevents both vulnerabilities.

Content
Overview

• Problem
• Related Work
• Our Solution
• Evaluation Results
• Future Work
• Conclusion

31

Future Work
•Optimizing Performance

• We see ≤10% overhead on network throughput.
• This is without any optimization to SandBPF (e.g., asynchrony).
• We see this as a reasonable baseline for future work to improve

performance.

•Simplify the eBPF verifier
• Remove some constraints on eBPF program expressiveness.

32

Content
Overview

• Problem
• Related Work
• Our Solution
• Evaluation Results
• Future Work
• Conclusion

33

Unprivilged eBPF for Better Kernel Extensibility

• Dynamic sandboxing is a viable approach to enforce security
properties in eBPF programs, complementary to the current
static mechanism employed by the eBPF verifier.

• SandBPF enhances runtime safety of the kernel to justify the
(currently dismissed) support of unprivileged eBPF programs.

34

35

Thank you! Any Questions?

Soo Yee Lim (sooyee@cs.ubc.ca)
Joint work with Xueyuan Han and Thomas Pasquier

	Unleashing Unprivileged eBPF Potential with �Dynamic Sandboxing
	eBPF Improves Kernel Extensibility
	Content Overview
	Slide Number 4
	Slide Number 5
	A Summary of eBPF CVEs (2010-2023)​
	Implication of eBPF Vulnerabilities
	Implication of eBPF Vulnerabilities
	Research Problem
	Content Overview
	Disable Unprivileged eBPF
	Formally Verifying the eBPF Verifier
	The Evolution of the Verifier’s Size
	Rust-based eBPF
	Content Overview
	Threat Model
	SandBPF: Dynamically Sandboxed eBPF
	SandBPF Is Minimally Invasive
	Memory Safety
	Sandbox Management
	Address Masking
	Control Flow Integrity
	Call Capabilities
	Redirect Control Transfers to Trampoline
	Recap: SandBPF
	Content Overview
	Breakdown of SandBPF Overhead
	Breakdown of SandBPF Overhead
	Macro-benchmark
	Security Evaluation
	Content Overview
	Future Work
	Content Overview
	Unprivilged eBPF for Better Kernel Extensibility
	Slide Number 35

