
Schooling NOOBs with eBPF


Joel Sommers

Colgate University 

Nolan Rudolph

University of Oregon 

Ramakrishnan Durairajan

University of Oregon



Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Motivation
• Typical active and passive measurements can 

provide significant insight into network performance 
and traffic behavior


• Ping, traceroute, packet/flow capture


• But they have many shortcomings


• Passive measurements have limited visibility


• Performance observed by typical active 
measurement can be misleading due to load 
balancing


• Typical measurement probes are subject to 
blocking and rate limiting


• Situation has led to NOOB (network oblivious) 
applications and end hosts 

2

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Goal
• Explore use of eBPF to provide fine-grained active and passive telemetry 

to address the NOOB problem


• Why eBPF?


• Low-overhead and portable in-band active measurement (tc/cls-bpf + 
XDP)


• Efficient passive measurement (XDP)


• Plus all the “usual” benefits of eBPF: Safe in-kernel execution, no kernel/
user boundary crossings (cf. libpcap), no need to modify applications

3

https://ebpf.io

mailto:jsommers@colgate.edu
https://ebpf.io


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobprobe: In-band active measurement

• In-band measurement: probes share same IP 
and transport layer information (e.g., 5-tuple)


• Hash-based load balancing causes probes 
to follow same path as application flow


• In-band probes are subject to same 
blocking policy as application traffic


• Use of eBPF offers a significant 
performance improvement over libpcap 
(Sommers and Durairajan, TMA 2022)

4

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobprobe overview
• User specifies destinations of interest (or 

application/process of interest)


• tc/cls-bpf program periodically clones 
application packets, optionally truncates, 
reduces TTL/hop count, writes a sequence 
number, injects probe into app flow


• Probe TTL/hop count expires along the 
path, triggering ICMP time exceeded 
message


• Ingress XDP program: inspects ICMP time 
exceeded message, matches with 
outgoing probe, and drops prior to 
entering standard network stack 
processing

5

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobprobe overview
• User specifies destinations of interest (or 

application/process of interest)


• tc/cls-bpf program periodically clones 
application packets, optionally truncates, 
reduces TTL/hop count, writes a sequence 
number, injects probe into app flow


• Probe TTL/hop count expires along the 
path, triggering ICMP time exceeded 
message


• Ingress XDP program: inspects ICMP time 
exceeded message, matches with 
outgoing probe, and drops prior to 
entering standard network stack 
processing

5

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobprobe overview
• User specifies destinations of interest (or 

application/process of interest)


• tc/cls-bpf program periodically clones 
application packets, optionally truncates, 
reduces TTL/hop count, writes a sequence 
number, injects probe into app flow


• Probe TTL/hop count expires along the 
path, triggering ICMP time exceeded 
message


• Ingress XDP program: inspects ICMP time 
exceeded message, matches with 
outgoing probe, and drops prior to 
entering standard network stack 
processing

5

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobprobe overview
• User specifies destinations of interest (or 

application/process of interest)


• tc/cls-bpf program periodically clones 
application packets, optionally truncates, 
reduces TTL/hop count, writes a sequence 
number, injects probe into app flow


• Probe TTL/hop count expires along the 
path, triggering ICMP time exceeded 
message


• Ingress XDP program: inspects ICMP time 
exceeded message, matches with 
outgoing probe, and drops prior to 
entering standard network stack 
processing

5

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobprobe implementation details
• Implemented using the BPF Compiler Collection (bcc), a library to simplify aspects of eBPF 

programming


• eBPF program at Linux tc hook performs probe creation, program at XDP hook for probe 
reception


• Code structure is modularized using BPF program jump tables


• User can write their own code, invoked before probes send and/or after receive


• Python management program runs until stopped


• Options for maximum probe rate, whether to truncate probes, destinations or app of interest


• Measurements stored in a CSV file as they are copied from kernel BPF map
6

https://github.com/iovisor/bcc

mailto:jsommers@colgate.edu
https://github.com/iovisor/bcc


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Wide-area experiments (1)
• Instrumented hourly “speedtest-style” flows for one 

week, from 4 Cloudlab locations and 1 university 
location


• NDT throughput tests with 12 M-Lab locations 
around the world


• Netflix’s fast.com throughput test


• Found that ~90% of all routers respond to in-band hop-
limited probes without apparent throttling


• We used a 100 probes/sec maximum rate


• High-resolution queuing delay plots emerge 


• Top plot is NDT flow between university site and NDT 
LGA server


• Bottom plot is fast.com test from the university site

7

mailto:jsommers@colgate.edu
http://fast.com
http://fast.com


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Wide-area experiments (2)

• Route changes and degraded throughput (top plot)


• NDT client between university site and M-Lab 
server in Vancouver, Canada


• 9 interdomain route changes observed in our 
week-long data collection


• (Significant) unequal throughput from load balanced 
paths (bottom plot)


• Example is from data collected between Clemson 
Cloudlab site and Dallas-Fort Worth M-Lab site


• Many more examples of statistically significant 
performance disparity on load-balanced paths

8

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

noobflow: passive flow capture
• Passive flow measurements can provide rich, fine-grained 

detail on network activity


• Collect at the edge, or in the cloud


• XDP component, written using bcc


• Two per-CPU maps (double buffering) with atomic swap 
for lock-free flow collection


• Experiments in CloudLab using hosts with 25 Gb/s interfaces


• Generate traffic 60 byte UDP packets with pktgen, from 1 
Mpps to 20 Mpps


• Plot shows maximum offered packet rate sustainable 
without loss

9

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Summary
• The NOOB problem is a persistent challenge


• eBPF offers a compelling implementation platform for network telemetry to address NOOBs 
which we explored with noobprobe/noobflow


• Future work


• Investigate perf buffers for delivering telemetry to userspace


• We used an older version of bcc which only supported fixed-size buffers


• Investigate bringing better network awareness to applications


• Better understand the nature of noise in latency measurements derived from ICMP time 
exceeded responses


• Code is available: https://github.com/jsommers/noob

10

mailto:jsommers@colgate.edu
https://github.com/jsommers/noob




Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Lab experiments: libpcap vs eBPF
• Goal: understand performance differences between libpcap- vs. ebpf-based in-

band measurement 


• Simple linear topology with three Linux hosts (A-B-C)


• Packets emitted with Linux pktgen at A, 2kpps up to 512kpps offered loads


• libpcap or ELF at B, cloning every 100th packet


• Original packet and clone received at C


• At low rate (32 kpps and above), packet loss and high variability for libpcap


• Negative spacing: some probes arrive before original packet — only with libpcap

12

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Lab experiments: queuing delays
• Linear topology of 5 Linux hosts


• TCP traffic generated using iperf3


• Experiments with cross traffic at different hops


• 20 millisecond one-way delays imposed at two different 
hops, using Linux tc


• Figure shows ELF and mtr-measured delays at the 2nd and 
3rd hops, no cross traffic


• Probe rate from ELF is a miniscule 32 kbit/sec, yet a 
detailed profile of queuing delay emerges


• Congestion primarily and clearly occurs at hop 2
13

mailto:jsommers@colgate.edu


Schooling NOOBs with eBPF | eBPF workshop ‘23 jsommers@colgate.edu

Lab experiments: libpcap vs eBPF
• Goal: understand performance differences between libpcap- vs. ebpf-based in-band 

measurement 


• Simple linear topology with three Linux hosts (A-B-C)


• Packets emitted with Linux pktgen at A


• libpcap or ELF at B, cloning every 100th packet


• Original packet and clone received at C


• At low rate, packet loss and high variability for libpcap


• Negative spacing: some probes arrive before original packet — only with libpcap

14

mailto:jsommers@colgate.edu

