HEELS: A Host-Enabled eBPF-Based

Load Balancing Scheme

Rui Yang* Marios Kogiasf

)7

eBPF workshop, SIGCOMM
September 10 2023

*Epe) t Imperial College
London

Layer 4 load balancer

TCP connection

000

L4 load balancer: Centralized Design
Maglev [NSDI '16], SilkRoad [Sigcomm ’17], Katran [Meta]

L4 load balancer: Centralized Design
Maglev [NSDI '16], SilkRoad [Sigcomm ’17], Katran (Meta)

Efficiency %
load balancer has a global view alel Q Q

Scalability é <
easily result in 10 bottleneck AQ
¢ ° I,

L4 load balancer: Decentralized Design
IPVS Kube-proxy (Kubernetes)

...................... ;

G
................. g
Qe —

L4 load balancer: Decentralized Design
IPVS Kube-proxy (Kubernetes)

Efficiency
load imbalance

Scalability
Every node acts as a load balancer

L4 load balancers: best of both worlds

CRAB

Bypassing the Load Balancer Without Regrets

Marios Kogias Rishabh Iyer Edouard Bugnion
EPFL EPFL EPFL
ABSTRACT USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

Load balancers are a ubiquitous component of cloud deploy-
ments and the cornerstone of workload elasticity. Load bal-
ancers can significantly affect the end-to-end application
latency with their load balancing decisions, and constitute a
significant portion of cloud tenant expenses.

We propose CRAB, an alternative L4 load balancing scheme
that eliminates latency overheads and scalability bottlenecks
while simultaneously enabling the deployment of complex,
stateful load balancing policies. A CRAB load balancer only
participates in the TCP connection establishment phase and
stays off the connection’s datapath. Thus, load balancer pro-
visioning depends on the rate of new connections rather
than the actual connection bandwidth. CRAB depends on
a new TCP option that enables connection redirection. We
provide different implementations for a CRAB load balancer
on different technologies, e.g., P4, DPDK, and eBPF, showing
that a CRAB load balancer does not require many resources
to perform well. We introduce the connection redirection
option to the Linux kernel with minor modifications, so that
it that can be shipped with the VM images offered by the
cloud providers. We show how the same functionality can be
achieved with a vanilla Linux kernel using a Netfilter mod-
ule, while we discuss how CRAB can work while clients and
servers remain completely agnostic, based on functionality
added on the host.

Our evaluation shows that CRAB pushes the IO bottleneck
from the load balancer to the servers in cases where vanilla
L4 load balancing does not scale and provides end-to-end
latencies that are close to direct communication while retain-
ing all the scheduling benefits of stateful L4 load balancing.

ACM Reference Format:

Marios Kogias, Rishabh Iyer, and Edouard Bugnion. 2020. Bypass-
ing the Load Balancer Without Regrets. In ACM Symposium on
Cloud Computing (SoCC °20), October 19-21, 2020, Virtual Event,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC 20, October 19-21, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

3419111.3421304

1 INTRODUCTION

Load balancing is ubiquitous: nearly all applications today
running in datacenters, public clouds, at the edge, or as core
internet services rely on some form of load-balancing for
both availability and scalability. Load balancing can have
different forms, e.g., L4, L7, DNS-based etc. and can be imple-
mented in hardware or in software. There has been consid-
erable research on load balancing [3, 9, 16, 24, 35, 42, 43, 47—
49] both from academia and industry due to not only the
demands for mass deployments, high throughput, and low
latency variability, but also the demands to lower provider
resources specifically dedicated to it. For instance, Google
reports that software-based load balancing can take up to
3-4% of a datacenter’s resources [16].

This paper focuses on internal load balancers, which are
deployed between clients and servers within the same dat-
acenter or public cloud. Internal load balancers can have a
significant impact on the end-to-end latency both due to their
load balancing decisions and the intermediate hop, while also
constituting a major part of the infrastructure costs for cloud
tenants. A common pattern includes the deployment of an in-
ternal cloud service, placed behind an internal load balancer,
that spawns new service instances according to load require-
ments and registers them with the load balancer, leading to
seamless scalability and elasticity.

Figure 1 illustrates a sample cloud-based, two-tier appli-
cation. Users using their browsers hit the public IP of the
external load balancer and their requests end up being served
by the two web servers. Those servers act as internal clients
for the backend-servers that are behind the internal load
balancer and communicate with a managed database service.
This design pattern allows the web tier and the back-end tier
to scale independently and remain agnostic to each other
due to the use of the two load balancers. Similar examples of
such design patterns for services (or microservices) include
ML inference to create recommendations, a user authentica-
tion microservice [23], generic application servers, and any
workload orchestrated in containers such as Kubernetes[39].

Internal load balancers must be able to handle low-latency,
high-throughput RPCs, typically implemented on protocols
such as gRPC [26], Thrift [55], HTTP, or even custom proto-

L4 load balancers: best of both worlds CRAB
2020

Efficiency /

Scalability 4/

TCP data traffic

L4 load balancers: best of both worlds CRAB
2020

Efficiency /

Scalability 4/

TCP data traffic

L4 load balancers: best of both worlds

Efficiency /

Scalability 4/’

CRAB
2020

TCP data traffic

CRAB is designed for the internal cloud workloads

10

Poor deployability

CRAB
2020

TCP data traffic

11

Poor deployability

Requires a customized load balancer
iIncompatible with real-world ones

CRAB
2020

TCP data traffic

12

CRAB
2020

Poor deployability

Requires a customized load balancer U ,

iIncompatible with real-world ones

Requires kernel changes at client side

through direct kernel patching or module loading

TCP data traffic

13

Comparison of existing L4 load

balancers

Efficiency

Scalability

Deployabillity

Centralized
Designs

Decentralized
Designs

CRAB
2020

14

Comparison of existing L4 load

balancers

Efficiency

Scalability

Deployability

Centralized
Designs

Decentralized
Designs

CRAB
2020

HEELS

15

HEELS bypasses the centralized load
balancer

Efficiency

Scalability

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

~O / \
o ofs
g2l oo mees » -0 > o D
TCP handshake
4.

TCP data traffic

HEELS is also designed for the Internal cloud
workloads

16 16

HEELS is readily deployable on the public HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

cloud 2023
Deployability e
@ O+ =
(el R R sED
. . . TCP handshake
Compatible with a wide range of LBs B
Both open-source and proprietary ones
TCP data traffic

Requiring no kernel modifications
Leveraging different eBPF hooks

17 17

HEELS is readily deployable on the public HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

cloud 2023
Deployability e
o ofs
P Ehl S > -0 > o D
. . . TCP handshake
Compatible with a wide range of LBs B
Both open-source and proprietary ones
TCP data traffic

Requiring no kernel modifications
Leveraging different eBPF hooks

18 18

Different mechanisms of L4 load balancers

Packet-encapsulation LB

Katran from Meta

Packet-rewriting LB
AWS Network Load Balancer

VIP| DIP_

19

Different mechanisms of L4 load balancers

Packet-encapsulation LB

Katran from Meta

VIP

VIP| DIP_

20

HEELS is compatible with a wide range

of LBs
CIP Client IP
VIP Load Balancer IP
DIP Server IP

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

src: CIP

dst: VIP

Kernel State

HEELS relies on a customized TCP option

21

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP

dst: VIP

Kernel State

HEELS requires no modifications to the
load balancer itself

22

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

The server modifies the incoming
SYN packet before TCP/IP stack

23

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

src: CIP
dst: DIP

VIP | DIP_
Kernel State

The server modifies the incoming
SYN packet before TCP/IP stack

24

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP
dst: DIP

src: CIP

dst: VIP

Kernel State

Kernel State

HEELS maintain its own state for
TCP connections

25

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP
dst: DIP

src: CIP

dst: VIP

Kernel State

Kernel State

HEELS State

HEELS maintain its own state for
TCP connections

26

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP

dst: VIP dst: DIP

Kernel State

Kernel State

HEELS State

HEELS rewrites every outgoing packet to
match the kernel state of the other end

27

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP

dst: VIP dst: DIP

Kernel State

Kernel State

HEELS State HEELS State

HEELS rewrites every outgoing packet to
match the kernel state of the other end

28

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP
dst: VIP dst: DIP

Kernel State Kernel State

HEELS State HEELS State

HEELS rewrites every outgoing packet to
match the kernel state of the other end

29

HEELS is compatible with a wide range
of LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

VIP| DIP_

src: CIP : src: CIP
dst: VIP dst: DIP

Kernel State Kernel State

HEELS State HEELS State

Direct communication after the handshake

30

Different mechanisms of L4 load balancers

Packet-rewriting LB
AWS Network Load Balancer

ot

VIP

VIP| DIP_

31

HEELS is readily deployable on the public HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

cloud 2023
Deployability e
o ofs
P Ehl S > -0 > o D
. . . TCP handshake
Compatible with a wide range of LBs B
Both open-source and proprietary ones
TCP data traffic

Requiring no kernel modifications
Leveraging different eBPF hooks

32 32

HEELS implements its design using a set of
eBPF programs

Process
user

Syscall

N

SOCKOPS Sockets

TCP/IP

Traffic Control
(TC) | 1 B B N e S .
Network Device

Driver
kern

HEELS
2023

SOCKOPS
Adding and extracting TCP options

Traffic Control (TC)
Rewriting ingress SYN packet at the server

eBPF programs for handshake phrase

33

HEELS implements its design using a set of
eBPF programs

Process
user

Syscall

SOCKOPS Sockets

N

TCP/IP

Traffic Control
(TC) | 1 B B N e S .
Network Device

Driver
kern

HEELS
2023

Traffic Control (TC)
Rewriting egress packets at end hosts

L

eBPF programs for data transmission phrase

34

HEELS implements its design using a set of
eBPF programs

SK_STORAGE

Storing HEELS state at end hosts

Per-connection eBPF data structure

HEELS
2023
/ \
g }% Eo —
1] oD
CIP DIP
sre: CIP SK STORAGE o G2
dst: VIP dst: DIP
Kernel State Kernel State
VIP — DIP A eBPF A eBPF OIP — VIP

Created at TCP handshake phrase and
accessed throughout the connection

35

We evaluate HEELS on both local testbed and public cloud

Implementation ~1.2k lines of eBPF code
Supports both Katran and AWS Network Load Balancer (NLB)

Questions Q1: Does HEELS bring significant overhead?
Deploy with Katran on local testbed

Q2: What benefits does HEELS bring on the cloud?
Deploy with AWS NLB on the cloud

36

HEELS introduces minimal performance overhead

Goodput (Gbps)
A
10 |
5 |
0 : >
1 100

Message Size (Kbytes)

All cores enabled

37

HEELS introduces minimal performance overhead

Goodput (Gbps)

10 _A_ mm HEELS
Hl \/anilla Katran

0 >
1 100

Message Size (Kbytes)

All cores enabled

38

HEELS introduces minimal performance overhead

Goodput (Gbps) Goodput (Gbps)
10 _A_ : H\/Eaili_lz Katran 10 f
5> - 5
0 0 : >
1 100 1 100

Message Size (Kbytes)

All cores enabled

Message Size (Kbytes)

Single core enabled

39

HEELS introduces minimal performance overhead

Goodput (Gbps) Goodput (Gbps)
A mm HEELS A = HEELS
10 | Vanilla Katran 1 O Hl \/anilla Katran

0 | >
1 100 1 100

Message Size (Kbytes) Message Size (Kbytes)

All cores enabled Single core enabled

HEELS introduces minimal performance overhead

Goodput (Gbps) Goodput (Gbps)
A mm HEELS A = HEELS
10 | Vanilla Katran 1 O Hl \/anilla Katran

3.2% overhead
introduced by HEELS

/

0 > 0 | >
1 100 1 100

Message Size (Kbytes) Message Size (Kbytes)

All cores enabled Single core enabled

HEELS improves the latency introduced by centralized LBs

Message size
(Kbytes)

A

4096 |

1024 |

Time (ms)

10

42

HEELS improves the latency introduced by centralized LBs

Message size

(Kbytes)
A
4096 F
1024 F ‘ ‘
‘ — HEELS
8 F ‘ — Vanilla AWS NLB
0 5 10

Time (ms)

43

HEELS improves the latency introduced by centralized LBs

Message size

(Kbytes) HEELS saves >10%
A latency
4096 F ‘
1024 + ‘ 1.4ms
‘ — HEELS
3 F ‘ — Vanilla AWS NLB
| >
0 5 10

Time (ms)

HEELS offers significant cost benefits for cloud users

AWS NLB pricing Me(S'o(S&g;SS)iZG Price per hour ($/hr)

Vanilla AWS NLB

HEEL

Cost for using AWS NLB
a flat rate of $0.027/hr 3

1024
Cost for data traversing AWS NLB

a $0.006/hr rate for every GB processed. 4096

45

HEELS offers significant cost benefits for cloud users

AWS NLB pricing Message size Price per hour ($/hr)
(Kbytes)
Vanilla AWS NLB HEEL
Cost for using AWS NLB
8 0.028 0.027
Cost for data traversing AWS NLB 1024 0.135 0.027
4096 0.459 0.027

46

HEELS offers significant cost benefits for cloud users

AWS NLB pricing

Cost for using AWS NLB

Cost for data traversing AWS NLB

Message size Price per hour ($/hr)
(Kbytes)
Vanilla AWS NLB HEEL
8 0.028 0.027
1024 0.135 0.027

4096 0.459 0.027

—

constant costs

47

HEELS offers significant cost benefits for cloud users

AWS NLB pricing

Cost for using AWS NLB

Cost for data traversing AWS NLB

Message size Price per hour ($/hr)
(Kbytes)
Vanilla AWS NLB HEEL
8 0.028 0.027
1024 0.135 0.027

4096 0.459 0.027

¢
I I
I I
I I
I I

Increasing costs as the constant costs
message Size grows

48

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

A new eBPF-based load balancing
scheme

src: CIP src: CIP

dst: VIP dst: DIP Readily deployable on the cloud

Kernel State Kernel State

TCP data traffic
HEELS State HEELS State

Bringing both performance and cost
benefits to users

49

