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L4 load balancers: best of both worlds

CRAB
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Load balancers are a ubiquitous component of cloud deploy-
ments and the cornerstone of workload elasticity. Load bal-
ancers can significantly affect the end-to-end application
latency with their load balancing decisions, and constitute a
significant portion of cloud tenant expenses.

We propose CRAB, an alternative L4 load balancing scheme
that eliminates latency overheads and scalability bottlenecks
while simultaneously enabling the deployment of complex,
stateful load balancing policies. A CRAB load balancer only
participates in the TCP connection establishment phase and
stays off the connection’s datapath. Thus, load balancer pro-
visioning depends on the rate of new connections rather
than the actual connection bandwidth. CRAB depends on
a new TCP option that enables connection redirection. We
provide different implementations for a CRAB load balancer
on different technologies, e.g., P4, DPDK, and eBPF, showing
that a CRAB load balancer does not require many resources
to perform well. We introduce the connection redirection
option to the Linux kernel with minor modifications, so that
it that can be shipped with the VM images offered by the
cloud providers. We show how the same functionality can be
achieved with a vanilla Linux kernel using a Netfilter mod-
ule, while we discuss how CRAB can work while clients and
servers remain completely agnostic, based on functionality
added on the host.

Our evaluation shows that CRAB pushes the IO bottleneck
from the load balancer to the servers in cases where vanilla
L4 load balancing does not scale and provides end-to-end
latencies that are close to direct communication while retain-
ing all the scheduling benefits of stateful L4 load balancing.
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1 INTRODUCTION

Load balancing is ubiquitous: nearly all applications today
running in datacenters, public clouds, at the edge, or as core
internet services rely on some form of load-balancing for
both availability and scalability. Load balancing can have
different forms, e.g., L4, L7, DNS-based etc. and can be imple-
mented in hardware or in software. There has been consid-
erable research on load balancing [3, 9, 16, 24, 35, 42, 43, 47—
49] both from academia and industry due to not only the
demands for mass deployments, high throughput, and low
latency variability, but also the demands to lower provider
resources specifically dedicated to it. For instance, Google
reports that software-based load balancing can take up to
3-4% of a datacenter’s resources [16].

This paper focuses on internal load balancers, which are
deployed between clients and servers within the same dat-
acenter or public cloud. Internal load balancers can have a
significant impact on the end-to-end latency both due to their
load balancing decisions and the intermediate hop, while also
constituting a major part of the infrastructure costs for cloud
tenants. A common pattern includes the deployment of an in-
ternal cloud service, placed behind an internal load balancer,
that spawns new service instances according to load require-
ments and registers them with the load balancer, leading to
seamless scalability and elasticity.

Figure 1 illustrates a sample cloud-based, two-tier appli-
cation. Users using their browsers hit the public IP of the
external load balancer and their requests end up being served
by the two web servers. Those servers act as internal clients
for the backend-servers that are behind the internal load
balancer and communicate with a managed database service.
This design pattern allows the web tier and the back-end tier
to scale independently and remain agnostic to each other
due to the use of the two load balancers. Similar examples of
such design patterns for services (or microservices) include
ML inference to create recommendations, a user authentica-
tion microservice [23], generic application servers, and any
workload orchestrated in containers such as Kubernetes[39].

Internal load balancers must be able to handle low-latency,
high-throughput RPCs, typically implemented on protocols
such as gRPC [26], Thrift [55], HTTP, or even custom proto-
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CRAB is designed for the internal cloud workloads
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Requires a customized load balancer U ,
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HEELS bypasses the centralized load
balancer
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HEELS is also designed for the Internal cloud
workloads
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HEELS is compatible with a wide range

of LBs
CIP Client IP
VIP Load Balancer IP
DIP Server IP

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
2023

src: CIP

dst: VIP

Kernel State

HEELS relies on a customized TCP option
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HEELS is compatible with a wide range
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HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
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src: CIP

dst: VIP

Kernel State

HEELS requires no modifications to the
load balancer itself
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Different mechanisms of L4 load balancers
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AWS Network Load Balancer

ot

VIP

_VIP_| DIP_

31



HEELS is readily deployable on the public HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

cloud 2023
Deployability e
o ofs
P Ehl S > -0 > o D
. . . TCP handshake
Compatible with a wide range of LBs B
Both open-source and proprietary ones
TCP data traffic

Requiring no kernel modifications
Leveraging different eBPF hooks

32 32



HEELS implements its design using a set of
eBPF programs

Process
user

Syscall

N

SOCKOPS Sockets

TCP/IP

Traffic Control
(TC) | 1 B B N e S .
Network Device

Driver
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HEELS
2023

SOCKOPS
Adding and extracting TCP options

Traffic Control (TC)
Rewriting ingress SYN packet at the server

eBPF programs for handshake phrase
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HEELS implements its design using a set of
eBPF programs

SK_STORAGE

Storing HEELS state at end hosts

Per-connection eBPF data structure
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We evaluate HEELS on both local testbed and public cloud

Implementation ~1.2k lines of eBPF code
Supports both Katran and AWS Network Load Balancer (NLB)

Questions Q1: Does HEELS bring significant overhead?
Deploy with Katran on local testbed

Q2: What benefits does HEELS bring on the cloud?
Deploy with AWS NLB on the cloud

36



HEELS introduces minimal performance overhead

Goodput (Gbps)
A
10 |
5 |
0 : >
1 100

Message Size (Kbytes)

All cores enabled

37



HEELS introduces minimal performance overhead

Goodput (Gbps)

10 _A_ mm HEELS
Hl \/anilla Katran

0 >
1 100

Message Size (Kbytes)

All cores enabled

38



HEELS introduces minimal performance overhead

Goodput (Gbps) Goodput (Gbps)
10 _A_ : H\/Eaili_lz Katran 10 f
5> - 5
0 0 : >
1 100 1 100

Message Size (Kbytes)

All cores enabled

Message Size (Kbytes)

Single core enabled

39



HEELS introduces minimal performance overhead

Goodput (Gbps) Goodput (Gbps)
A  mm HEELS A = HEELS
10 | Vanilla Katran 1 O Hl \/anilla Katran

0 | >
1 100 1 100

Message Size (Kbytes) Message Size (Kbytes)

All cores enabled Single core enabled



HEELS introduces minimal performance overhead
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HEELS improves the latency introduced by centralized LBs
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HEELS improves the latency introduced by centralized LBs
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HEELS offers significant cost benefits for cloud users

AWS NLB pricing Me(S'o(S&g;SS)iZG Price per hour ($/hr)

Vanilla AWS NLB

HEEL

Cost for using AWS NLB
a flat rate of $0.027/hr 3

1024
Cost for data traversing AWS NLB

a $0.006/hr rate for every GB processed. 4096
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HEELS offers significant cost benefits for cloud users

AWS NLB pricing

Cost for using AWS NLB

Cost for data traversing AWS NLB

Message size Price per hour ($/hr)
(Kbytes)
Vanilla AWS NLB HEEL
8 0.028 0.027
1024 0.135 0.027

4096 0.459 0.027

¢
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Increasing costs as the constant costs
message Size grows
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HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

A new eBPF-based load balancing
scheme

src: CIP src: CIP

dst: VIP dst: DIP Readily deployable on the cloud

Kernel State Kernel State

TCP data traffic
HEELS State HEELS State

Bringing both performance and cost
benefits to users
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