
Rui Yang*

HEELS: A Host-Enabled eBPF-Based
Load Balancing Scheme

eBPF workshop, SIGCOMM
September 10 2023

* †

Marios Kogias†

Layer 4 load balancer

2

TCP connection

L4 load balancer: Centralized Design

3

Maglev [NSDI ’16], SilkRoad [Sigcomm ’17], Katran [Meta]

L4 load balancer: Centralized Design

easily result in IO bottleneck
Scalability

load balancer has a global view
Efficiency

4

Maglev [NSDI ’16], SilkRoad [Sigcomm ’17], Katran (Meta)

L4 load balancer: Decentralized Design

5

IPVS Kube-proxy (Kubernetes)

L4 load balancer: Decentralized Design

Efficiency
load imbalance

Scalability
Every node acts as a load balancer

6

IPVS Kube-proxy (Kubernetes)

Bypassing the Load Balancer Without Regrets
Marios Kogias

EPFL
Rishabh Iyer

EPFL
Edouard Bugnion

EPFL

ABSTRACT
Load balancers are a ubiquitous component of cloud deploy-
ments and the cornerstone of workload elasticity. Load bal-
ancers can signi�cantly a�ect the end-to-end application
latency with their load balancing decisions, and constitute a
signi�cant portion of cloud tenant expenses.

We propose CRAB, an alternative L4 load balancing scheme
that eliminates latency overheads and scalability bottlenecks
while simultaneously enabling the deployment of complex,
stateful load balancing policies. A CRAB load balancer only
participates in the TCP connection establishment phase and
stays o� the connection’s datapath. Thus, load balancer pro-
visioning depends on the rate of new connections rather
than the actual connection bandwidth. CRAB depends on
a new TCP option that enables connection redirection. We
provide di�erent implementations for a CRAB load balancer
on di�erent technologies, e.g., P4, DPDK, and eBPF, showing
that a CRAB load balancer does not require many resources
to perform well. We introduce the connection redirection
option to the Linux kernel with minor modi�cations, so that
it that can be shipped with the VM images o�ered by the
cloud providers. We show how the same functionality can be
achieved with a vanilla Linux kernel using a Net�lter mod-
ule, while we discuss how CRAB can work while clients and
servers remain completely agnostic, based on functionality
added on the host.

Our evaluation shows that CRAB pushes the IO bottleneck
from the load balancer to the servers in cases where vanilla
L4 load balancing does not scale and provides end-to-end
latencies that are close to direct communication while retain-
ing all the scheduling bene�ts of stateful L4 load balancing.

ACM Reference Format:
Marios Kogias, Rishabh Iyer, and Edouard Bugnion. 2020. Bypass-
ing the Load Balancer Without Regrets. In ACM Symposium on
Cloud Computing (SoCC ’20), October 19–21, 2020, Virtual Event,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8137-6/20/10.
https://doi.org/10.1145/3419111.3421304

USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3419111.3421304

1 INTRODUCTION
Load balancing is ubiquitous: nearly all applications today
running in datacenters, public clouds, at the edge, or as core
internet services rely on some form of load-balancing for
both availability and scalability. Load balancing can have
di�erent forms, e.g., L4, L7, DNS-based etc. and can be imple-
mented in hardware or in software. There has been consid-
erable research on load balancing [3, 9, 16, 24, 35, 42, 43, 47–
49] both from academia and industry due to not only the
demands for mass deployments, high throughput, and low
latency variability, but also the demands to lower provider
resources speci�cally dedicated to it. For instance, Google
reports that software-based load balancing can take up to
3-4% of a datacenter’s resources [16].
This paper focuses on internal load balancers, which are

deployed between clients and servers within the same dat-
acenter or public cloud. Internal load balancers can have a
signi�cant impact on the end-to-end latency both due to their
load balancing decisions and the intermediate hop, while also
constituting a major part of the infrastructure costs for cloud
tenants. A common pattern includes the deployment of an in-
ternal cloud service, placed behind an internal load balancer,
that spawns new service instances according to load require-
ments and registers them with the load balancer, leading to
seamless scalability and elasticity.
Figure 1 illustrates a sample cloud-based, two-tier appli-

cation. Users using their browsers hit the public IP of the
external load balancer and their requests end up being served
by the two web servers. Those servers act as internal clients
for the backend-servers that are behind the internal load
balancer and communicate with a managed database service.
This design pattern allows the web tier and the back-end tier
to scale independently and remain agnostic to each other
due to the use of the two load balancers. Similar examples of
such design patterns for services (or microservices) include
ML inference to create recommendations, a user authentica-
tion microservice [23], generic application servers, and any
workload orchestrated in containers such as Kubernetes[39].

Internal load balancers must be able to handle low-latency,
high-throughput RPCs, typically implemented on protocols
such as gRPC [26], Thrift [55], HTTP, or even custom proto-
cols on top of TCP, e.g., Redis, Memcache. The technical chal-
lenge is to spread the load as evenly as possible by leveraging

193

2020
CRABL4 load balancers: best of both worlds

Efficiency

Scalability

7

Efficiency

Scalability

L4 load balancers: best of both worlds

TCP handshake

TCP data traffic

2020
CRAB

8

Efficiency

Scalability

L4 load balancers: best of both worlds

TCP handshake

TCP data traffic

2020
CRAB

9

Server IP

Efficiency

Scalability

L4 load balancers: best of both worlds

TCP handshake

TCP data traffic

CRAB is designed for the internal cloud workloads

2020
CRAB

10

Server IP

Poor deployability

TCP handshake

TCP data traffic

2020
CRAB

11

Server IP

Poor deployability

Requires a customized load balancer
incompatible with real-world ones TCP handshake

TCP data traffic

2020
CRAB

12

Server IP

Poor deployability

Requires kernel changes at client side

through direct kernel patching or module loading

Requires a customized load balancer
incompatible with real-world ones TCP handshake

TCP data traffic

2020
CRAB

13

Server IP

Efficiency

Scalability

Comparison of existing L4 load
balancers

Deployability

Centralized
Designs

Decentralized
Designs

CRAB
2020

14

Efficiency

Scalability

Comparison of existing L4 load
balancers

Deployability

Centralized
Designs

Decentralized
Designs

CRAB
2020

HEELS

15

HEELS bypasses the centralized load
balancer 2023

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

TCP handshake

TCP data traffic

16

Efficiency

Scalability

16

HEELS is also designed for the internal cloud
workloads

HEELS is readily deployable on the public
cloud 2023

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

TCP handshake

TCP data traffic

17

Requiring no kernel modifications
Leveraging different eBPF hooks

Compatible with a wide range of LBs
Both open-source and proprietary ones

Deployability

17

HEELS is readily deployable on the public
cloud 2023

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

TCP handshake

TCP data traffic

18

Requiring no kernel modifications
Leveraging different eBPF hooks

Compatible with a wide range of LBs
Both open-source and proprietary ones

Deployability

18

SYN
VIPCIP

SYN
VIPCIP

Packet-encapsulation LB

VIP

DIPVIP

SYN
VIPCIP

SYN
DIPVIP

Packet-rewriting LB
VIP

19

Different mechanisms of L4 load balancers

Katran from Meta

AWS Network Load Balancer

SYN
VIPCIP

SYN
VIPCIP

Packet-encapsulation LB

VIP

DIPVIP

Katran from Meta

SYN
VIPCIP

SYN
DIPCIP

Packet-rewriting LB
VIP

20

Different mechanisms of L4 load balancers

AWS Network Load Balancer

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme HEELS is compatible with a wide range

of LBs

Kernel State

src: CIP
dst: VIP

HEELS relies on a customized TCP option

21

CIP Client IP

VIP Load Balancer IP

DIP Server IP

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

 SYN
VIPCIP
DIPVIP

HEELS:

Kernel State

src: CIP
dst: VIP

HEELS requires no modifications to the
load balancer itself

22

HEELS is compatible with a wide range
of LBs

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

The server modifies the incoming
SYN packet before TCP/IP stack

VIP

 SYN
VIPCIP
DIPVIP

HEELS:

DIP

SYN (REDIR:
DIPCIP

HEELS:

Sockets

APP

TCP/IP

23

HEELS is compatible with a wide range
of LBs

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

The server modifies the incoming
SYN packet before TCP/IP stack

VIP

 SYN
VIPCIP
DIPVIP

HEELS:

DIP

SYN (REDIR:
DIPCIP

HEELS:

Sockets

APP

TCP/IPKernel State

src: CIP
dst: DIP

24

HEELS is compatible with a wide range
of LBs

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

HEELS maintain its own state for
TCP connections

 SYN
VIPCIP
DIPVIP

HEELS:

25

HEELS is compatible with a wide range
of LBs

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

HEELS State
DIP VIP

HEELS maintain its own state for
TCP connections

 SYN
VIPCIP
DIPVIP

HEELS:

26

HEELS is compatible with a wide range
of LBs

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

 SYN/ACK
CIPVIP

HEELS:

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

HEELS State
DIP VIP

HEELS rewrites every outgoing packet to
match the kernel state of the other end

 SYN
VIPCIP
DIPVIP

HEELS:

27

HEELS is compatible with a wide range
of LBs

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

 SYN/ACK
CIPVIP

HEELS:

HEELS State
VIP DIP

HEELS State
DIP VIP

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

HEELS rewrites every outgoing packet to
match the kernel state of the other end

 SYN
VIPCIP
DIPVIP

HEELS:

28

HEELS is compatible with a wide range
of LBs

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

 SYN/ACK
CIPVIP

HEELS:

PAYLOAD
DIPCIP

HEELS State
VIP DIP

HEELS State
DIP VIP

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

 SYN
VIPCIP
DIPVIP

HEELS:

HEELS rewrites every outgoing packet to
match the kernel state of the other end

29

HEELS is compatible with a wide range
of LBs

CIP VIP DIP

SYN (REDIR:
VIPCIP

HEELS:

2023
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

 SYN/ACK
CIPVIP

HEELS:

PAYLOAD
DIPCIP

HEELS State
VIP DIP

HEELS State
DIP VIP

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

PAYLOAD
CIPVIP

 SYN
VIPCIP
DIPVIP

HEELS:

Direct communication after the handshake

30

HEELS is compatible with a wide range
of LBs

SYN
VIPCIP

SYN
VIPCIP

Packet-encapsulation LB

VIP

DIPVIP

Katran from Meta

SYN
VIPCIP

SYN
DIPCIP

Packet-rewriting LB
VIPAWS Network Load Balancer

31

Different mechanisms of L4 load balancers

HEELS is readily deployable on the public
cloud 2023

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

TCP handshake

TCP data traffic

32

Requiring no kernel modifications
Leveraging different eBPF hooks

Compatible with a wide range of LBs
Both open-source and proprietary ones

Deployability

32

HEELS implements its design using a set of
eBPF programs

kern

user

NIC

Network Device
Driver

TCP/IP

Sockets

Syscall

Process

SOCKOPS

SOCKOPS

SYN (REDIR:
VIPCIP

HEELS: SYN
VIPCIP

Adding and extracting TCP options

Traffic Control
(TC)

Traffic Control (TC)
Rewriting ingress SYN packet at the server

SYN (REDIR:
DIPCIP

HEELS: SYN
VIPCIP
DIPVIP

HEELS:

eBPF programs for handshake phrase

2023
HEELS

33

2023
HEELSHEELS implements its design using a set of

eBPF programs

kern

user

NIC

Network Device
Driver

TCP/IP

Sockets

Syscall

Process

Traffic Control (TC)

Traffic Control
(TC)

Rewriting egress packets at end hosts

PAYLOAD
VIPCIP

PAYLOAD
DIPCIP

SOCKOPS

eBPF programs for data transmission phrase

34

HEELS implements its design using a set of
eBPF programs

CIP

HEELS State
VIP DIP

Kernel State

src: CIP
dst: VIP

DIP

HEELS State
DIP VIP

Kernel State

src: CIP
dst: DIP

SK_STORAGE

SK_STORAGE

Requires no changes to kernel state
Storing HEELS state at end hosts

Same lifetime as the TCP connection
Per-connection eBPF data structure

2023
HEELS

Created at TCP handshake phrase and
accessed throughout the connection

35

Questions

Implementation ~1.2k lines of eBPF code
Supports both Katran and AWS Network Load Balancer (NLB)

Q2: What benefits does HEELS bring on the cloud?
Deploy with AWS NLB on the cloud

Q1: Does HEELS bring significant overhead?
Deploy with Katran on local testbed

We evaluate HEELS on both local testbed and public cloud

36

HEELS introduces minimal performance overhead eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

the client – rewriting all outgoing packets’ source IP to VIP, which
is retrieved from the connection’s SK_STORAGE.

5 EVALUATION
In this section, we evaluate HEELS’s performance and the ease of its
deployment in the real world. First, we benchmark the throughput
and latency overhead of HEELS (§5.1). Then, we demonstrate the
usefulness of HEELS by deploying it with AWS’ Network Load
balancer and Katran on the public cloud, highlighting its immediate
cost-saving bene�ts (§5.2).

We run the benchmark experiments on three Intel Xeon E5-2637
@3.50GHz with 8 cores (16 hyper threads) and a 10G NIC. The
three machines are connected by a Quanta/Cumulus 48x10GbE
switch. For the cloud experiments, we employ �ve virtual machines
with instance type t3.large from AWS. All the above servers and
virtual machines are running Ubuntu 22.04 (kernel 5.15.0).

5.1 Performance Analysis
We begin our evaluation by studying the throughput and latency
overhead brought by HEELS to both TCP connection establishment
and data transmission. We perform the experiments in our local
testbed. The testbed setup includes one client machine, one server
machine, and one load balancer machine. These three machines
are in the same rack, and directly connected with each other via a
Top-of-Rack (ToR) switch.

To properly benchmark the performance, we use a customized
implementation of Netperf’s CRR (Connect-Request-Response) and
RR (Request-Response) [12]. The original CRR benchmarkmeasures
the latency of establishing a connection, exchanging a single re-
quest/response with an 8-byte payload, and closing this connection.
In the RR benchmark, clients establish a connection once and then
use this persistent connection to exchange all requests/responses
with the server. In our evaluation, we perform both CRR and RR
benchmarking to measure latency and throughput. However, we
customize the message sizes and the number of connections to
observe the performance of HEELS under various tra�c loads.

5.1.1 Throughput Overhead. To measure the throughput over-
head HEELS introduces, we run the RR benchmark with increasing
message sizes and measure the goodput (bytes of application data
per unit time). The load balancer machine runs Katran, which is an
eBPF-based L4 load balancer. To ensure maximal performance of
Katran, we load its XDP programs in native mode. Note that since
HEELS only deploys eBPF programs on the client and server, there
exists no interference between HEELS and Katran. We compare
HEELS with two baselines: (i) direct data transmission where the
client and the server communicate directly with each other, and
(ii) IP Virtual Server (IPVS) [20], a mechanism widely used in the
decentralized design where the clients perform load balancing. We
compare them with HEELS running with Katran.

Fig. 2 shows the goodput comparison between direct data trans-
fer, IPVS, and HEELS. Throughout the experiments, we �x the
number of concurrent TCP connections to 100. Fig. 2a represents
the results when all CPU cores are enabled on the client and server
machines, while Fig. 2b shows the results with only one CPU core
enabled on each machine. Fig. 2a demonstrates that HEELS achieves
the same goodput with direct data transfer and IPVS throughout

1 100
0

5

10

Message Size (Kbytes)

G
oo

dp
ut

(G
bp

s)

(a) all cores enabled

1 100
0

5

10

Message Size (Kbytes)

(b) single core enabled
Figure 2: The goodput achieved by direct data transfer and
HEELS in a 10Gbps network link.

0 0.50 1.00 1.50

1

100

Latency (normalized)

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS Vanilla Katran
IPVS Direct Data transfer

(a) CRR benchmark

0 0.50 1.00 1.50

1

100

Latency (normalized)

(b) RR benchmark
Figure 3: Unloaded median latency measured for direct data
transfer, vanilla katran, and HEELS.

0 10 20 30 40 50 60
Time [us]

HEELS (full) HEELS (SYN & SYNACK)
HEELS (SYN) Vanilla Katran
Direct Data transfer

Figure 4: TCP handshake latency breakdown

the experiments. When transmitting 32KB of data, they all achieve
a goodput of ⇠9.39Gbps, starting to saturate the 10G link.

Note that in our testbed, with the default kernel con�guration,
one single core alone can not saturate the 10G link. Therefore, the
goal of the experiment in Fig. 2b is to measure the overhead intro-
duced by HEELS and compare it with IPVS and direct data transfer,
while being CPU-bound. As shown, when transmitting 260KB of
data, both direct data transfer and HEELS start to reach ⇠100% CPU
usage and their goodput is 6.248 Gbps and 6.043 Gbps, respectively.
This indicates a 3.2% overhead brought by HEELS to data trans-
mission. Note that IPVS also achieves similar performance with
HEELS, as it brings a 2% ⇠ 3% overhead to direct data transmission
throughout the experiment.

5.1.2 Latency Overhead. Now we proceed to measure the la-
tency overhead imposed by HEELS. We con�gure the CRR and RR

Goodput (Gbps)

Message Size (Kbytes)

All cores enabled
37

HEELS introduces minimal performance overhead

Goodput (Gbps)

Message Size (Kbytes)

All cores enabled

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

the client – rewriting all outgoing packets’ source IP to VIP, which
is retrieved from the connection’s SK_STORAGE.

5 EVALUATION
In this section, we evaluate HEELS’s performance and the ease of its
deployment in the real world. First, we benchmark the throughput
and latency overhead of HEELS (§5.1). Then, we demonstrate the
usefulness of HEELS by deploying it with AWS’ Network Load
balancer and Katran on the public cloud, highlighting its immediate
cost-saving bene�ts (§5.2).

We run the benchmark experiments on three Intel Xeon E5-2637
@3.50GHz with 8 cores (16 hyper threads) and a 10G NIC. The
three machines are connected by a Quanta/Cumulus 48x10GbE
switch. For the cloud experiments, we employ �ve virtual machines
with instance type t3.large from AWS. All the above servers and
virtual machines are running Ubuntu 22.04 (kernel 5.15.0).

5.1 Performance Analysis
We begin our evaluation by studying the throughput and latency
overhead brought by HEELS to both TCP connection establishment
and data transmission. We perform the experiments in our local
testbed. The testbed setup includes one client machine, one server
machine, and one load balancer machine. These three machines
are in the same rack, and directly connected with each other via a
Top-of-Rack (ToR) switch.

To properly benchmark the performance, we use a customized
implementation of Netperf’s CRR (Connect-Request-Response) and
RR (Request-Response) [12]. The original CRR benchmarkmeasures
the latency of establishing a connection, exchanging a single re-
quest/response with an 8-byte payload, and closing this connection.
In the RR benchmark, clients establish a connection once and then
use this persistent connection to exchange all requests/responses
with the server. In our evaluation, we perform both CRR and RR
benchmarking to measure latency and throughput. However, we
customize the message sizes and the number of connections to
observe the performance of HEELS under various tra�c loads.

5.1.1 Throughput Overhead. To measure the throughput over-
head HEELS introduces, we run the RR benchmark with increasing
message sizes and measure the goodput (bytes of application data
per unit time). The load balancer machine runs Katran, which is an
eBPF-based L4 load balancer. To ensure maximal performance of
Katran, we load its XDP programs in native mode. Note that since
HEELS only deploys eBPF programs on the client and server, there
exists no interference between HEELS and Katran. We compare
HEELS with two baselines: (i) direct data transmission where the
client and the server communicate directly with each other, and
(ii) IP Virtual Server (IPVS) [20], a mechanism widely used in the
decentralized design where the clients perform load balancing. We
compare them with HEELS running with Katran.

Fig. 2 shows the goodput comparison between direct data trans-
fer, IPVS, and HEELS. Throughout the experiments, we �x the
number of concurrent TCP connections to 100. Fig. 2a represents
the results when all CPU cores are enabled on the client and server
machines, while Fig. 2b shows the results with only one CPU core
enabled on each machine. Fig. 2a demonstrates that HEELS achieves
the same goodput with direct data transfer and IPVS throughout

1 100
0

5

10

Message Size (Kbytes)

G
oo

dp
ut

(G
bp

s)

(a) all cores enabled

1 100
0

5

10

Message Size (Kbytes)

(b) single core enabled
Figure 2: The goodput achieved by direct data transfer and
HEELS in a 10Gbps network link.

0 0.50 1.00 1.50

1

100

Latency (normalized)

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS Vanilla Katran
IPVS Direct Data transfer

(a) CRR benchmark

0 0.50 1.00 1.50

1

100

Latency (normalized)

(b) RR benchmark
Figure 3: Unloaded median latency measured for direct data
transfer, vanilla katran, and HEELS.

0 10 20 30 40 50 60
Time [us]

HEELS (full) HEELS (SYN & SYNACK)
HEELS (SYN) Vanilla Katran
Direct Data transfer

Figure 4: TCP handshake latency breakdown

the experiments. When transmitting 32KB of data, they all achieve
a goodput of ⇠9.39Gbps, starting to saturate the 10G link.

Note that in our testbed, with the default kernel con�guration,
one single core alone can not saturate the 10G link. Therefore, the
goal of the experiment in Fig. 2b is to measure the overhead intro-
duced by HEELS and compare it with IPVS and direct data transfer,
while being CPU-bound. As shown, when transmitting 260KB of
data, both direct data transfer and HEELS start to reach ⇠100% CPU
usage and their goodput is 6.248 Gbps and 6.043 Gbps, respectively.
This indicates a 3.2% overhead brought by HEELS to data trans-
mission. Note that IPVS also achieves similar performance with
HEELS, as it brings a 2% ⇠ 3% overhead to direct data transmission
throughout the experiment.

5.1.2 Latency Overhead. Now we proceed to measure the la-
tency overhead imposed by HEELS. We con�gure the CRR and RR

38

HEELS
Vanilla Katran

HEELS introduces minimal performance overhead

Goodput (Gbps)

Message Size (Kbytes)

All cores enabled

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

the client – rewriting all outgoing packets’ source IP to VIP, which
is retrieved from the connection’s SK_STORAGE.

5 EVALUATION
In this section, we evaluate HEELS’s performance and the ease of its
deployment in the real world. First, we benchmark the throughput
and latency overhead of HEELS (§5.1). Then, we demonstrate the
usefulness of HEELS by deploying it with AWS’ Network Load
balancer and Katran on the public cloud, highlighting its immediate
cost-saving bene�ts (§5.2).

We run the benchmark experiments on three Intel Xeon E5-2637
@3.50GHz with 8 cores (16 hyper threads) and a 10G NIC. The
three machines are connected by a Quanta/Cumulus 48x10GbE
switch. For the cloud experiments, we employ �ve virtual machines
with instance type t3.large from AWS. All the above servers and
virtual machines are running Ubuntu 22.04 (kernel 5.15.0).

5.1 Performance Analysis
We begin our evaluation by studying the throughput and latency
overhead brought by HEELS to both TCP connection establishment
and data transmission. We perform the experiments in our local
testbed. The testbed setup includes one client machine, one server
machine, and one load balancer machine. These three machines
are in the same rack, and directly connected with each other via a
Top-of-Rack (ToR) switch.

To properly benchmark the performance, we use a customized
implementation of Netperf’s CRR (Connect-Request-Response) and
RR (Request-Response) [12]. The original CRR benchmarkmeasures
the latency of establishing a connection, exchanging a single re-
quest/response with an 8-byte payload, and closing this connection.
In the RR benchmark, clients establish a connection once and then
use this persistent connection to exchange all requests/responses
with the server. In our evaluation, we perform both CRR and RR
benchmarking to measure latency and throughput. However, we
customize the message sizes and the number of connections to
observe the performance of HEELS under various tra�c loads.

5.1.1 Throughput Overhead. To measure the throughput over-
head HEELS introduces, we run the RR benchmark with increasing
message sizes and measure the goodput (bytes of application data
per unit time). The load balancer machine runs Katran, which is an
eBPF-based L4 load balancer. To ensure maximal performance of
Katran, we load its XDP programs in native mode. Note that since
HEELS only deploys eBPF programs on the client and server, there
exists no interference between HEELS and Katran. We compare
HEELS with two baselines: (i) direct data transmission where the
client and the server communicate directly with each other, and
(ii) IP Virtual Server (IPVS) [20], a mechanism widely used in the
decentralized design where the clients perform load balancing. We
compare them with HEELS running with Katran.

Fig. 2 shows the goodput comparison between direct data trans-
fer, IPVS, and HEELS. Throughout the experiments, we �x the
number of concurrent TCP connections to 100. Fig. 2a represents
the results when all CPU cores are enabled on the client and server
machines, while Fig. 2b shows the results with only one CPU core
enabled on each machine. Fig. 2a demonstrates that HEELS achieves
the same goodput with direct data transfer and IPVS throughout

1 100
0

5

10

Message Size (Kbytes)

G
oo

dp
ut

(G
bp

s)

(a) all cores enabled

1 100
0

5

10

Message Size (Kbytes)

(b) single core enabled
Figure 2: The goodput achieved by direct data transfer and
HEELS in a 10Gbps network link.

0 0.50 1.00 1.50

1

100

Latency (normalized)

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS Vanilla Katran
IPVS Direct Data transfer

(a) CRR benchmark

0 0.50 1.00 1.50

1

100

Latency (normalized)

(b) RR benchmark
Figure 3: Unloaded median latency measured for direct data
transfer, vanilla katran, and HEELS.

0 10 20 30 40 50 60
Time [us]

HEELS (full) HEELS (SYN & SYNACK)
HEELS (SYN) Vanilla Katran
Direct Data transfer

Figure 4: TCP handshake latency breakdown

the experiments. When transmitting 32KB of data, they all achieve
a goodput of ⇠9.39Gbps, starting to saturate the 10G link.

Note that in our testbed, with the default kernel con�guration,
one single core alone can not saturate the 10G link. Therefore, the
goal of the experiment in Fig. 2b is to measure the overhead intro-
duced by HEELS and compare it with IPVS and direct data transfer,
while being CPU-bound. As shown, when transmitting 260KB of
data, both direct data transfer and HEELS start to reach ⇠100% CPU
usage and their goodput is 6.248 Gbps and 6.043 Gbps, respectively.
This indicates a 3.2% overhead brought by HEELS to data trans-
mission. Note that IPVS also achieves similar performance with
HEELS, as it brings a 2% ⇠ 3% overhead to direct data transmission
throughout the experiment.

5.1.2 Latency Overhead. Now we proceed to measure the la-
tency overhead imposed by HEELS. We con�gure the CRR and RR

Single core enabled

Goodput (Gbps)

Message Size (Kbytes)

HEELS
Vanilla Katran

39

HEELS introduces minimal performance overhead

All cores enabled

Goodput (Gbps)

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

the client – rewriting all outgoing packets’ source IP to VIP, which
is retrieved from the connection’s SK_STORAGE.

5 EVALUATION
In this section, we evaluate HEELS’s performance and the ease of its
deployment in the real world. First, we benchmark the throughput
and latency overhead of HEELS (§5.1). Then, we demonstrate the
usefulness of HEELS by deploying it with AWS’ Network Load
balancer and Katran on the public cloud, highlighting its immediate
cost-saving bene�ts (§5.2).

We run the benchmark experiments on three Intel Xeon E5-2637
@3.50GHz with 8 cores (16 hyper threads) and a 10G NIC. The
three machines are connected by a Quanta/Cumulus 48x10GbE
switch. For the cloud experiments, we employ �ve virtual machines
with instance type t3.large from AWS. All the above servers and
virtual machines are running Ubuntu 22.04 (kernel 5.15.0).

5.1 Performance Analysis
We begin our evaluation by studying the throughput and latency
overhead brought by HEELS to both TCP connection establishment
and data transmission. We perform the experiments in our local
testbed. The testbed setup includes one client machine, one server
machine, and one load balancer machine. These three machines
are in the same rack, and directly connected with each other via a
Top-of-Rack (ToR) switch.

To properly benchmark the performance, we use a customized
implementation of Netperf’s CRR (Connect-Request-Response) and
RR (Request-Response) [12]. The original CRR benchmarkmeasures
the latency of establishing a connection, exchanging a single re-
quest/response with an 8-byte payload, and closing this connection.
In the RR benchmark, clients establish a connection once and then
use this persistent connection to exchange all requests/responses
with the server. In our evaluation, we perform both CRR and RR
benchmarking to measure latency and throughput. However, we
customize the message sizes and the number of connections to
observe the performance of HEELS under various tra�c loads.

5.1.1 Throughput Overhead. To measure the throughput over-
head HEELS introduces, we run the RR benchmark with increasing
message sizes and measure the goodput (bytes of application data
per unit time). The load balancer machine runs Katran, which is an
eBPF-based L4 load balancer. To ensure maximal performance of
Katran, we load its XDP programs in native mode. Note that since
HEELS only deploys eBPF programs on the client and server, there
exists no interference between HEELS and Katran. We compare
HEELS with two baselines: (i) direct data transmission where the
client and the server communicate directly with each other, and
(ii) IP Virtual Server (IPVS) [20], a mechanism widely used in the
decentralized design where the clients perform load balancing. We
compare them with HEELS running with Katran.

Fig. 2 shows the goodput comparison between direct data trans-
fer, IPVS, and HEELS. Throughout the experiments, we �x the
number of concurrent TCP connections to 100. Fig. 2a represents
the results when all CPU cores are enabled on the client and server
machines, while Fig. 2b shows the results with only one CPU core
enabled on each machine. Fig. 2a demonstrates that HEELS achieves
the same goodput with direct data transfer and IPVS throughout

1 100
0

5

10

Message Size (Kbytes)

G
oo

dp
ut

(G
bp

s)

(a) all cores enabled

1 100
0

5

10

Message Size (Kbytes)

(b) single core enabled
Figure 2: The goodput achieved by direct data transfer and
HEELS in a 10Gbps network link.

0 0.50 1.00 1.50

1

100

Latency (normalized)

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS Vanilla Katran
IPVS Direct Data transfer

(a) CRR benchmark

0 0.50 1.00 1.50

1

100

Latency (normalized)

(b) RR benchmark
Figure 3: Unloaded median latency measured for direct data
transfer, vanilla katran, and HEELS.

0 10 20 30 40 50 60
Time [us]

HEELS (full) HEELS (SYN & SYNACK)
HEELS (SYN) Vanilla Katran
Direct Data transfer

Figure 4: TCP handshake latency breakdown

the experiments. When transmitting 32KB of data, they all achieve
a goodput of ⇠9.39Gbps, starting to saturate the 10G link.

Note that in our testbed, with the default kernel con�guration,
one single core alone can not saturate the 10G link. Therefore, the
goal of the experiment in Fig. 2b is to measure the overhead intro-
duced by HEELS and compare it with IPVS and direct data transfer,
while being CPU-bound. As shown, when transmitting 260KB of
data, both direct data transfer and HEELS start to reach ⇠100% CPU
usage and their goodput is 6.248 Gbps and 6.043 Gbps, respectively.
This indicates a 3.2% overhead brought by HEELS to data trans-
mission. Note that IPVS also achieves similar performance with
HEELS, as it brings a 2% ⇠ 3% overhead to direct data transmission
throughout the experiment.

5.1.2 Latency Overhead. Now we proceed to measure the la-
tency overhead imposed by HEELS. We con�gure the CRR and RR

Single core enabled

Message Size (Kbytes)

Goodput (Gbps)

Message Size (Kbytes)

HEELS
Vanilla Katran

HEELS
Vanilla Katran

40

HEELS introduces minimal performance overhead

All cores enabled

Goodput (Gbps)

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

the client – rewriting all outgoing packets’ source IP to VIP, which
is retrieved from the connection’s SK_STORAGE.

5 EVALUATION
In this section, we evaluate HEELS’s performance and the ease of its
deployment in the real world. First, we benchmark the throughput
and latency overhead of HEELS (§5.1). Then, we demonstrate the
usefulness of HEELS by deploying it with AWS’ Network Load
balancer and Katran on the public cloud, highlighting its immediate
cost-saving bene�ts (§5.2).

We run the benchmark experiments on three Intel Xeon E5-2637
@3.50GHz with 8 cores (16 hyper threads) and a 10G NIC. The
three machines are connected by a Quanta/Cumulus 48x10GbE
switch. For the cloud experiments, we employ �ve virtual machines
with instance type t3.large from AWS. All the above servers and
virtual machines are running Ubuntu 22.04 (kernel 5.15.0).

5.1 Performance Analysis
We begin our evaluation by studying the throughput and latency
overhead brought by HEELS to both TCP connection establishment
and data transmission. We perform the experiments in our local
testbed. The testbed setup includes one client machine, one server
machine, and one load balancer machine. These three machines
are in the same rack, and directly connected with each other via a
Top-of-Rack (ToR) switch.

To properly benchmark the performance, we use a customized
implementation of Netperf’s CRR (Connect-Request-Response) and
RR (Request-Response) [12]. The original CRR benchmarkmeasures
the latency of establishing a connection, exchanging a single re-
quest/response with an 8-byte payload, and closing this connection.
In the RR benchmark, clients establish a connection once and then
use this persistent connection to exchange all requests/responses
with the server. In our evaluation, we perform both CRR and RR
benchmarking to measure latency and throughput. However, we
customize the message sizes and the number of connections to
observe the performance of HEELS under various tra�c loads.

5.1.1 Throughput Overhead. To measure the throughput over-
head HEELS introduces, we run the RR benchmark with increasing
message sizes and measure the goodput (bytes of application data
per unit time). The load balancer machine runs Katran, which is an
eBPF-based L4 load balancer. To ensure maximal performance of
Katran, we load its XDP programs in native mode. Note that since
HEELS only deploys eBPF programs on the client and server, there
exists no interference between HEELS and Katran. We compare
HEELS with two baselines: (i) direct data transmission where the
client and the server communicate directly with each other, and
(ii) IP Virtual Server (IPVS) [20], a mechanism widely used in the
decentralized design where the clients perform load balancing. We
compare them with HEELS running with Katran.

Fig. 2 shows the goodput comparison between direct data trans-
fer, IPVS, and HEELS. Throughout the experiments, we �x the
number of concurrent TCP connections to 100. Fig. 2a represents
the results when all CPU cores are enabled on the client and server
machines, while Fig. 2b shows the results with only one CPU core
enabled on each machine. Fig. 2a demonstrates that HEELS achieves
the same goodput with direct data transfer and IPVS throughout

1 100
0

5

10

Message Size (Kbytes)

G
oo

dp
ut

(G
bp

s)

(a) all cores enabled

1 100
0

5

10

Message Size (Kbytes)

(b) single core enabled
Figure 2: The goodput achieved by direct data transfer and
HEELS in a 10Gbps network link.

0 0.50 1.00 1.50

1

100

Latency (normalized)

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS Vanilla Katran
IPVS Direct Data transfer

(a) CRR benchmark

0 0.50 1.00 1.50

1

100

Latency (normalized)

(b) RR benchmark
Figure 3: Unloaded median latency measured for direct data
transfer, vanilla katran, and HEELS.

0 10 20 30 40 50 60
Time [us]

HEELS (full) HEELS (SYN & SYNACK)
HEELS (SYN) Vanilla Katran
Direct Data transfer

Figure 4: TCP handshake latency breakdown

the experiments. When transmitting 32KB of data, they all achieve
a goodput of ⇠9.39Gbps, starting to saturate the 10G link.

Note that in our testbed, with the default kernel con�guration,
one single core alone can not saturate the 10G link. Therefore, the
goal of the experiment in Fig. 2b is to measure the overhead intro-
duced by HEELS and compare it with IPVS and direct data transfer,
while being CPU-bound. As shown, when transmitting 260KB of
data, both direct data transfer and HEELS start to reach ⇠100% CPU
usage and their goodput is 6.248 Gbps and 6.043 Gbps, respectively.
This indicates a 3.2% overhead brought by HEELS to data trans-
mission. Note that IPVS also achieves similar performance with
HEELS, as it brings a 2% ⇠ 3% overhead to direct data transmission
throughout the experiment.

5.1.2 Latency Overhead. Now we proceed to measure the la-
tency overhead imposed by HEELS. We con�gure the CRR and RR

Single core enabled

Message Size (Kbytes)

Goodput (Gbps)

Message Size (Kbytes)

3.2% overhead
introduced by HEELS

HEELS
Vanilla Katran

HEELS
Vanilla Katran

41

Message size
(Kbytes)

Time (ms)

HEELS improves the latency introduced by centralized LBs

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme eBPF ’23, September 10, 2023, New York, NY, USA

Table 2: Deploying costs for vanilla AWS NLB, HEELS w AWS
NLB, and vanilla Katran in the cloud

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla HEELS w Vanilla
AWS NLB AWS NLB Katran

8 0.028 0.027 0.092
1024 0.135 0.027 0.092
4096 0.459 0.027 0.092

benchmarks to use a single RX/TX queue and core, a single connec-
tion, and allow for a single outstanding request in this connection.
We use the following three baselines: (i) direct data transmission,
(ii) IPVS, and (iii) vanilla Katran load balancer without HEELS.

Fig. 3 plots the normalized unloaded latency (median) over 400 000
samples using both CRR and RR benchmarks, transmitting 1 KB
and 100 KB data. In both benchmarks, vanilla Katran constantly in-
troduces ⇠50% more latency than direct data transfer. For instance,
when transmitting 1KB data, the CRR latency of direct data transfer
and vanilla Katran is 105µs and 150µs, respectively. This is due to
the fact that all packets sent from the client need to go through
the Katran load balancer, resulting in a half RTT latency overhead.
Since the SYN packets in HEELS also need to go through the load bal-
ancer, this overhead is unavoidable in its handshake phase. Indeed,
as shown in the CRR benchmark, HEELS incurs the same overhead
to the direct data transfer when sending 1KB data. However, this
initial overhead gets amortized for longer connections. For instance,
in the CRR benchmark, HEELS only introduces ⇠9% overhead to
direct data transfer for 100KB data transmission. This observation
aligns with the RR benchmark shown in Fig. 3b, where HEELS adds
almost no extra latency in the data transmission phase, since the
TCP handshake is excluded. Note that IPVS achieves similar perfor-
mance with direct data transfer in both CRR and RR benchmarks, as
packets in IPVS are always directly transmitted between the client
and the server, without involving the load balancer.

Considering HEELS only exhibits latency overhead during con-
nection establishment, we dive deeper and investigate the latency
added by each eBPF program in this phase. Speci�cally, we incre-
mentally enable and load the relevant eBPF programs, observing the
duration of the connection establishment without any data trans-
fer. Initially, we enable the client_sock program which adds the
TCP option to the SYN packet (HEELS (SYN)). Then, we enable the
server_sock program which adds the TCP option to SYN-ACK, as
well as the server_tc_ingress program (HEELS (SYN & SYNACK)).
Finally, we enable all the eBPF programs of HEELS. Fig. 4 sum-
marizes the experiment results. We observe that HEELS slightly
increases (3-4 µs) the connection establishment duration on top of
Katran. This increase is distributed almost evenly among all the
eBPF programs involved.

5.2 Deployment in the Cloud
In this section, we demonstrate the usefulness and cost bene�ts
of HEELS by deploying it on the public cloud. We employ four
virtual machines (VM) on AWS: one serving as the client and three
as backend servers. Each VM uses the ENA driver [21] to allow

0 5 10

8

1024

4096

Time [ms]

M
es
sa
ge

Si
ze

(K
by

te
s)

Figure 5: Unloaded median latency measured for AWS Net-
work load balancer and HEELS.

loading XDP programs. For the purpose of observing unloaded
latency, we only use a single client VM. In addition, we use a VM as
the Katran load balancer and con�gure an AWS NLB to distribute
tra�c to the three backends. At each backend, we use NGINX [29]
to serve a static �le.We use wrk2 [33] at the client to generate HTTP
requests over a persistent connection and measure the latency.

We have the following four di�erent con�gurations in this ex-
periment: (i) vanilla Katran where the tra�c is load balanced by
the Katran load balancer directly, (ii) HEELS with the Katran load
balancer, (iii) vanilla AWS NLB where the tra�c is load balanced
by the native load balancer unit, and (iv) HEELS with AWS NLB.

Our experiments show that HEELS works seamlessly with both
AWS NLB and Katran on the cloud. It is worth noting that the
HEELS presents no deployment issues in the public cloud. Fig. 5
plots the median latency measured with increasing �le sizes served
by NGINX at backends. We observed that vanilla AWS NLB has
the highest latency. For instance, its latency is nearly 1.4ms higher
than HEELS with AWS NLB, when requesting 4MB of data. There
are several factors that may contribute to its higher latency. First,
unlike Katran, AWS NLB is not a Direct Server Return (DSR [28])
load balancer, suggesting a higher RTT overhead. Second, since we
con�gured the Katran load balancer with the same instance type
as the client and servers, it is likely situated closer to the endpoints
compared to AWS NLB. Notably, Fig. 5 also shows that HEELS with
Katran and HEELS with AWS NLB achieve similar latency across
di�erent �le sizes, as their tra�c both follows the same data path.

Deploying HEELS on the cloud does not only improve the la-
tency introduced by centralized load balancers, but also o�ers cost
advantages for cloud users. The insight is that cloud providers
often charge tenants by the amount of data traversing the load
balancer they employ. With HEELS bypassing the load balancer in
the data path, the load balancer costs are no longer dependent on
the amount of data exchanged between clients and servers. This
has the potential of signi�cantly reducing the overall cost for load
balancing internal cloud workloads. Indeed, in Table 2 we compute
the load balancer costs per hour for the previous latency experiment
setup, where the clients continuously request data from NGINX
servers. The load balancer costs consist of (i) a �at rate of $0.027/hr,
and (ii) a $0.006/hr rate for every GB processed in this hour. As

42

Message size
(Kbytes)

Time (ms)

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme eBPF ’23, September 10, 2023, New York, NY, USA

Table 2: Deploying costs for vanilla AWS NLB, HEELS w AWS
NLB, and vanilla Katran in the cloud

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla HEELS w Vanilla
AWS NLB AWS NLB Katran

8 0.028 0.027 0.092
1024 0.135 0.027 0.092
4096 0.459 0.027 0.092

benchmarks to use a single RX/TX queue and core, a single connec-
tion, and allow for a single outstanding request in this connection.
We use the following three baselines: (i) direct data transmission,
(ii) IPVS, and (iii) vanilla Katran load balancer without HEELS.

Fig. 3 plots the normalized unloaded latency (median) over 400 000
samples using both CRR and RR benchmarks, transmitting 1 KB
and 100 KB data. In both benchmarks, vanilla Katran constantly in-
troduces ⇠50% more latency than direct data transfer. For instance,
when transmitting 1KB data, the CRR latency of direct data transfer
and vanilla Katran is 105µs and 150µs, respectively. This is due to
the fact that all packets sent from the client need to go through
the Katran load balancer, resulting in a half RTT latency overhead.
Since the SYN packets in HEELS also need to go through the load bal-
ancer, this overhead is unavoidable in its handshake phase. Indeed,
as shown in the CRR benchmark, HEELS incurs the same overhead
to the direct data transfer when sending 1KB data. However, this
initial overhead gets amortized for longer connections. For instance,
in the CRR benchmark, HEELS only introduces ⇠9% overhead to
direct data transfer for 100KB data transmission. This observation
aligns with the RR benchmark shown in Fig. 3b, where HEELS adds
almost no extra latency in the data transmission phase, since the
TCP handshake is excluded. Note that IPVS achieves similar perfor-
mance with direct data transfer in both CRR and RR benchmarks, as
packets in IPVS are always directly transmitted between the client
and the server, without involving the load balancer.

Considering HEELS only exhibits latency overhead during con-
nection establishment, we dive deeper and investigate the latency
added by each eBPF program in this phase. Speci�cally, we incre-
mentally enable and load the relevant eBPF programs, observing the
duration of the connection establishment without any data trans-
fer. Initially, we enable the client_sock program which adds the
TCP option to the SYN packet (HEELS (SYN)). Then, we enable the
server_sock program which adds the TCP option to SYN-ACK, as
well as the server_tc_ingress program (HEELS (SYN & SYNACK)).
Finally, we enable all the eBPF programs of HEELS. Fig. 4 sum-
marizes the experiment results. We observe that HEELS slightly
increases (3-4 µs) the connection establishment duration on top of
Katran. This increase is distributed almost evenly among all the
eBPF programs involved.

5.2 Deployment in the Cloud
In this section, we demonstrate the usefulness and cost bene�ts
of HEELS by deploying it on the public cloud. We employ four
virtual machines (VM) on AWS: one serving as the client and three
as backend servers. Each VM uses the ENA driver [21] to allow

0 5 10

8

1024

4096

Time [ms]

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS
vanilla AWS NLB

Figure 5: Unloaded median latency measured for AWS Net-
work load balancer and HEELS.

loading XDP programs. For the purpose of observing unloaded
latency, we only use a single client VM. In addition, we use a VM as
the Katran load balancer and con�gure an AWS NLB to distribute
tra�c to the three backends. At each backend, we use NGINX [29]
to serve a static �le.We use wrk2 [33] at the client to generate HTTP
requests over a persistent connection and measure the latency.

We have the following four di�erent con�gurations in this ex-
periment: (i) vanilla Katran where the tra�c is load balanced by
the Katran load balancer directly, (ii) HEELS with the Katran load
balancer, (iii) vanilla AWS NLB where the tra�c is load balanced
by the native load balancer unit, and (iv) HEELS with AWS NLB.

Our experiments show that HEELS works seamlessly with both
AWS NLB and Katran on the cloud. It is worth noting that the
HEELS presents no deployment issues in the public cloud. Fig. 5
plots the median latency measured with increasing �le sizes served
by NGINX at backends. We observed that vanilla AWS NLB has
the highest latency. For instance, its latency is nearly 1.4ms higher
than HEELS with AWS NLB, when requesting 4MB of data. There
are several factors that may contribute to its higher latency. First,
unlike Katran, AWS NLB is not a Direct Server Return (DSR [28])
load balancer, suggesting a higher RTT overhead. Second, since we
con�gured the Katran load balancer with the same instance type
as the client and servers, it is likely situated closer to the endpoints
compared to AWS NLB. Notably, Fig. 5 also shows that HEELS with
Katran and HEELS with AWS NLB achieve similar latency across
di�erent �le sizes, as their tra�c both follows the same data path.

Deploying HEELS on the cloud does not only improve the la-
tency introduced by centralized load balancers, but also o�ers cost
advantages for cloud users. The insight is that cloud providers
often charge tenants by the amount of data traversing the load
balancer they employ. With HEELS bypassing the load balancer in
the data path, the load balancer costs are no longer dependent on
the amount of data exchanged between clients and servers. This
has the potential of signi�cantly reducing the overall cost for load
balancing internal cloud workloads. Indeed, in Table 2 we compute
the load balancer costs per hour for the previous latency experiment
setup, where the clients continuously request data from NGINX
servers. The load balancer costs consist of (i) a �at rate of $0.027/hr,
and (ii) a $0.006/hr rate for every GB processed in this hour. As

HEELS improves the latency introduced by centralized LBs

HEELS
Vanilla AWS NLB

43

1.4ms

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme eBPF ’23, September 10, 2023, New York, NY, USA

Table 2: Deploying costs for vanilla AWS NLB, HEELS w AWS
NLB, and vanilla Katran in the cloud

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla HEELS w Vanilla
AWS NLB AWS NLB Katran

8 0.028 0.027 0.092
1024 0.135 0.027 0.092
4096 0.459 0.027 0.092

benchmarks to use a single RX/TX queue and core, a single connec-
tion, and allow for a single outstanding request in this connection.
We use the following three baselines: (i) direct data transmission,
(ii) IPVS, and (iii) vanilla Katran load balancer without HEELS.

Fig. 3 plots the normalized unloaded latency (median) over 400 000
samples using both CRR and RR benchmarks, transmitting 1 KB
and 100 KB data. In both benchmarks, vanilla Katran constantly in-
troduces ⇠50% more latency than direct data transfer. For instance,
when transmitting 1KB data, the CRR latency of direct data transfer
and vanilla Katran is 105µs and 150µs, respectively. This is due to
the fact that all packets sent from the client need to go through
the Katran load balancer, resulting in a half RTT latency overhead.
Since the SYN packets in HEELS also need to go through the load bal-
ancer, this overhead is unavoidable in its handshake phase. Indeed,
as shown in the CRR benchmark, HEELS incurs the same overhead
to the direct data transfer when sending 1KB data. However, this
initial overhead gets amortized for longer connections. For instance,
in the CRR benchmark, HEELS only introduces ⇠9% overhead to
direct data transfer for 100KB data transmission. This observation
aligns with the RR benchmark shown in Fig. 3b, where HEELS adds
almost no extra latency in the data transmission phase, since the
TCP handshake is excluded. Note that IPVS achieves similar perfor-
mance with direct data transfer in both CRR and RR benchmarks, as
packets in IPVS are always directly transmitted between the client
and the server, without involving the load balancer.

Considering HEELS only exhibits latency overhead during con-
nection establishment, we dive deeper and investigate the latency
added by each eBPF program in this phase. Speci�cally, we incre-
mentally enable and load the relevant eBPF programs, observing the
duration of the connection establishment without any data trans-
fer. Initially, we enable the client_sock program which adds the
TCP option to the SYN packet (HEELS (SYN)). Then, we enable the
server_sock program which adds the TCP option to SYN-ACK, as
well as the server_tc_ingress program (HEELS (SYN & SYNACK)).
Finally, we enable all the eBPF programs of HEELS. Fig. 4 sum-
marizes the experiment results. We observe that HEELS slightly
increases (3-4 µs) the connection establishment duration on top of
Katran. This increase is distributed almost evenly among all the
eBPF programs involved.

5.2 Deployment in the Cloud
In this section, we demonstrate the usefulness and cost bene�ts
of HEELS by deploying it on the public cloud. We employ four
virtual machines (VM) on AWS: one serving as the client and three
as backend servers. Each VM uses the ENA driver [21] to allow

0 5 10

8

1024

4096

Time [ms]

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS
vanilla AWS NLB

Figure 5: Unloaded median latency measured for AWS Net-
work load balancer and HEELS.

loading XDP programs. For the purpose of observing unloaded
latency, we only use a single client VM. In addition, we use a VM as
the Katran load balancer and con�gure an AWS NLB to distribute
tra�c to the three backends. At each backend, we use NGINX [29]
to serve a static �le.We use wrk2 [33] at the client to generate HTTP
requests over a persistent connection and measure the latency.

We have the following four di�erent con�gurations in this ex-
periment: (i) vanilla Katran where the tra�c is load balanced by
the Katran load balancer directly, (ii) HEELS with the Katran load
balancer, (iii) vanilla AWS NLB where the tra�c is load balanced
by the native load balancer unit, and (iv) HEELS with AWS NLB.

Our experiments show that HEELS works seamlessly with both
AWS NLB and Katran on the cloud. It is worth noting that the
HEELS presents no deployment issues in the public cloud. Fig. 5
plots the median latency measured with increasing �le sizes served
by NGINX at backends. We observed that vanilla AWS NLB has
the highest latency. For instance, its latency is nearly 1.4ms higher
than HEELS with AWS NLB, when requesting 4MB of data. There
are several factors that may contribute to its higher latency. First,
unlike Katran, AWS NLB is not a Direct Server Return (DSR [28])
load balancer, suggesting a higher RTT overhead. Second, since we
con�gured the Katran load balancer with the same instance type
as the client and servers, it is likely situated closer to the endpoints
compared to AWS NLB. Notably, Fig. 5 also shows that HEELS with
Katran and HEELS with AWS NLB achieve similar latency across
di�erent �le sizes, as their tra�c both follows the same data path.

Deploying HEELS on the cloud does not only improve the la-
tency introduced by centralized load balancers, but also o�ers cost
advantages for cloud users. The insight is that cloud providers
often charge tenants by the amount of data traversing the load
balancer they employ. With HEELS bypassing the load balancer in
the data path, the load balancer costs are no longer dependent on
the amount of data exchanged between clients and servers. This
has the potential of signi�cantly reducing the overall cost for load
balancing internal cloud workloads. Indeed, in Table 2 we compute
the load balancer costs per hour for the previous latency experiment
setup, where the clients continuously request data from NGINX
servers. The load balancer costs consist of (i) a �at rate of $0.027/hr,
and (ii) a $0.006/hr rate for every GB processed in this hour. As

Message size
(Kbytes)

Time (ms)

HEELS saves >10%
latency

HEELS improves the latency introduced by centralized LBs

HEELS
Vanilla AWS NLB

44

HEELS offers significant cost benefits for cloud users

8

1024

4096

45

HEEL

Price per hour ($/hr)

Vanilla AWS NLB

AWS NLB pricing

a flat rate of $0.027/hr
Cost for using AWS NLB

a $0.006/hr rate for every GB processed.
Cost for data traversing AWS NLB

Message size
(Kbytes)

HEELS offers significant cost benefits for cloud users

HEEL

8 0.027

1024 0.027

4096

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla AWS NLB

0.028

0.135

0.459 0.027

46

AWS NLB pricing

a flat rate of $0.027/hr
Cost for using AWS NLB

a $0.006/hr rate for every GB processed.
Cost for data traversing AWS NLB

HEELS offers significant cost benefits for cloud users

HEEL

8 0.027

1024 0.027

4096

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla AWS NLB

0.028

0.135

0.459 0.027

constant costs

47

AWS NLB pricing

a flat rate of $0.027/hr
Cost for using AWS NLB

a $0.006/hr rate for every GB processed.
Cost for data traversing AWS NLB

HEELS offers significant cost benefits for cloud users

HEEL

8 0.027

1024 0.027

4096

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla AWS NLB

0.028

0.135

0.459 0.027

AWS NLB pricing

a flat rate of $0.027/hr
Cost for using AWS NLB

a $0.006/hr rate for every GB processed.
Cost for data traversing AWS NLB

constant costsIncreasing costs as the
message size grows

48

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme

TCP handshake

TCP data traffic
HEELS State

VIP DIP
HEELS State
DIP VIP

Kernel State

src: CIP
dst: VIP

Kernel State

src: CIP
dst: DIP

A new eBPF-based load balancing
scheme

Readily deployable on the cloud

Bringing both performance and cost
benefits to users

49

