
Probius: Automated Approach for VNF and Service Chain
Analysis in Software-Defined NFV

Jaehyun Nam
KAIST

namjh@kaist.ac.kr

Junsik Seo
KAIST

js0780@kaist.ac.kr

Seungwon Shin
KAIST

claude@kaist.ac.kr

ABSTRACT
As the complexity of modern networks increases, virtualization
techniques, such as software-defined networking (SDN) and net-
work function virtualization (NFV), get highlighted to achieve vari-
ous network management and operating requirements. However,
those virtualization techniques (specifically, NFV) have a critical
issue that the performance of virtualized network functions (VNFs)
is easily affected by diverse environmental factors (e.g., various
workloads, resource contentions among VNFs), so resulting in un-
expected performance degradations - performance uncertainty. Un-
fortunately, existing approaches mostly provide limited information
about a single VNF or the underlying infrastructure (e.g., Xen, KVM),
which is deficient in reasoning why the performance uncertainties
occur. For such reasons, we first deeply investigate the behaviors
of multiple VNFs along service chains in NFV environments, and
define a set of critical performance features for each layer in the
NFV hierarchical stack. Based on our investigations and findings,
we introduce an automated analysis system, Probius, providing
the comprehensive view of VNFs and their service chains on the
basis of NFV architectural characteristics. Probius collects most
possible NFV performance related features efficiently, analyzes the
behaviors of NFV, and finally detects abnormal behaviors of NFV
- possible reasons of performance uncertainties. To show the ef-
fectiveness of Probius, we have deployed 7 open-source VNFs and
found 5 interesting performance issues caused by environmental
factors.

CCS CONCEPTS
• Networks→ Network performance analysis; Network moni-
toring; Network measurement;

KEYWORDS
VirtualizedNetwork Function; Service Chain; PerformanceAnalysis

ACM Reference Format:
Jaehyun Nam, Junsik Seo, and Seungwon Shin. 2018. Probius: Automated
Approach for VNF and Service Chain Analysis in Software-Defined NFV.
In SOSR ’18: SOSR ’18: Symposium on SDN Research, March 28–29, 2018, Los
Angeles, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3185467.3185495

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185495

1 INTRODUCTION
Modern enterprise networks are now in transforming into a new
era of virtualization. By adopting new virtualization techniques,
such as software-defined networking (SDN) and network function
virtualization (NFV), enterprise networks are able to reduce their
operational/management costs and complexities [55]. For exam-
ple, CoMb has introduced software-defined middleboxes to replace
existing hardware middleboxes [56] and we can also find real com-
mercial products relying on these virtualization techniques [22].

However, as with great power comes great responsibilities, these
techniques raise another critical side issue of performance uncer-
tainty, meaning unexpected performance degradation or variation
of NFV. Since those virtualization techniques are mostly operated
with software functions (instead of hardware logics), it is hard to say
their expected performance (compared with hardware dedicated
ones). There are many variables, such as co-locating applications,
OS scheduling methods, and I/O bottlenecks, causing performance
variations and they make us hard to predict average, minimum, and
maximum performance of an NFV system.

While this performance uncertainty is a known problem, most
existing works have not touched this problem clearly. Most recent
NFV related works have focused on its performance issue, techni-
cally improving the performance of NFV. They are trying to reduce
network I/O overheads of NFV by employing high-performance
packet I/O engines [30, 33, 45, 49–51], or to eliminate inter-VM com-
munication overheads by introduced user-space packet processing
stacks (e.g., E2 [46], NetVM [32, 61]). Indeed, those pioneering
works are really helpful in letting people adopt NFV in real world
environments. However, those works are still not able to solve the
problem of performance uncertainty. They do NOT reveal where
is the major bottleneck point of an NFV system, and they do NOT
show why this performance uncertainty happens.

We may be able to employ the knowledge from other domains
(e.g., system profiling) to solve this issue, and we notice that some
early stage works have been proposed [39, 43, 52]. For example,
VBaaS [52] focuses on the variations of vCPU usages and through-
puts in VNFs to understand the behaviors of VNFs, andNFVPerf [43]
presents the throughput and delay differences between inter-VNF
communication paths to understand service chains across VNFs. In
addition, there are some more systematic methods to profile virtu-
alized environments [6, 31, 44]. Unfortunately, their outcomes are
still uncertain and do not explain why a performance degradation
happens although they may point out some conspicuous locations.
Since VNFs are highly dependent on network workloads, the profile
results could be different according to constantly changing work-
loads, and this situation is much worse, if VNFs are distributed,
causing service chains. Moreover, the overall performance of VNFs
could be significantly degraded due to the profiling overheads. In

https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1145/3185467.3185495

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Nam et al.

sum, current analysis approaches are insufficient to thoroughly ad-
dress the root causes of performance issues in NFV environments.

To understand the performance uncertainty of NFV (i.e., why and
where it happens), we introduce a comprehensive and systematic
NFV profiling approach. We first investigate the behaviors of VNFs
based on the correlations with a hypervisor and other VNFs in a ser-
vice chain, giving insight into the analysis methodology suitable for
NFV environments. With the knowledge of NFV environments, we
define performance features required to analyze each layer in the
NFV architecture. Then, we design Probius, a novel analytic system
that automatically collects the features for VNFs from each layer
in the NFV hierarchical stack and analyzes performance problems
through performance anomaly detection and graph-based behav-
ior analysis. For the automated analysis of various service chains,
Probius generates all possible service chains with the given VNFs
and automatically builds up the VNFs of each service chain in NFV
environments with different resource constraints and workloads.

The analysis part of Probius is conducted with three major steps:
feature collection, performance anomaly detection, and behavior anal-
ysis. First, Probius extracts performance features from the entire
NFV architecture (i.e., VMs containing VNFs, a virtual switch, a hy-
pervisor, and even the underlying hardware). In addition, it draws
the state transition graphs of VNFs to figure out the internal work-
flow of VNFs. Second, it sorts out service chains that may have
some performance issues. For this, it employs regression analysis
techniques to evaluate the influence of each service chain in all
possible service chains. Lastly, it analyzes the behaviors of VNFs
based on the criteria of our workflow classification. To point out
the specific reasons of performance problems, it separates the state
transitions of VNFs according to our criteria and figures out the
most reliable reasons of the performance issues through the por-
tion variations of each VNF. To show the effectiveness of Probius,
we have deployed 7 open-source VNFs in our NFV environment
with the KVM hypervisor. By analyzing those VNFs under various
conditions, we have discovered 5 interesting performance issues
caused by the environmental factors.
Our contributions are summarized as follows.
• We analyze the architectural characteristics of NFV environ-
ments based on the behaviors of VNFs along service chains
and define performance features suitable for NFV environ-
ments.
• We develop Probius that automatically analyzes VNFs in
various service chains and reasons out performance issues
on the basis of the NFV architectural characteristics without
human intervention.
• We provide the rigorous analysis results with 7 open-source
VNFs and discuss possible performance issues according to
how to deploy VNFs and how to make a service chain.
• We release the source code of Probius as an open-source
project to let network operators analyze their NFV environ-
ments themselves.

2 BACKGROUND AND MOTIVATION
Here, we briefly present a basic NFV architecture and discuss its
potential performance bottleneck points. Then, we introduce two
example scenarios presenting performance uncertainty of NFV.

VM
vCPUs

VM
vCPUs

Virtual Driver

Virtual switch layer
(Less optimized packet processing engine)

Hypervisor (e.g., KVM) layer
(State transition overheads due to privileged operations and idleness)

vhost

Hardware layer
(Resource exhaustion, buffer overflow or queue imbalance at NICs)

VNF application VNF application

Virtual Driver

Virtual NIC

Network I/O
overhead

Inter-VM communication
overhead

Less optimized
VNF implementations

Figure 1: NFV architecture with major bottleneck points

2.1 NFV Architecture and Bottleneck Points
As shown in Figure 1, network function virtualization (NFV) is
basically composed of four layers: virtualized network function
(VNF), virtual switch, hypervisor, and hardware layers. Here, we
describe the functionality and potential bottleneck points of each
layer (from bottom to top).

Hardware layer: This layer basically provides hardware re-
sources (e.g., CPU and memory) to NFV, and each hardware re-
source will affect the performance of NFV. Especially, according to
the computing power and the number of CPUs, the packet process-
ing performancewould vary, resulting in the changes in the baseline
performance of VNFs. Network interface cards (NICs) are also crit-
ical in terms of performance since they determine the maximum
throughputs (e.g., 1Gbps, 10Gbps) of NFV environments. Besides
them, disk performance can affect the overall throughputs as well.

In the hardware layer, most performance bottlenecks happen
when system resource usages are reached at the hardware limi-
tations. For example, when all CPU resources are exhausted, per-
formance degradations can obviously arise. In the case of NICs,
the buffer overflow or inefficient queue utilization can result in
low performance. The disk I/O performance can incur longer I/O
waiting time, unnecessarily making VNFs idle.

Hypervisor layer: Hypervisors (e.g., Xen [23] and KVM [34])
are used to virtualize the physical resources in the underlying hard-
ware. Thus, when VNFs trigger I/O operations, hypervisors handle
those operations instead of the VNFs since the target devices in the
operations are also virtualized. To enhance the I/O performance
of VNFs, in the case of KVM, it applies para-virtualized drivers
(i.e., VirtIO [54]) that provide the fast and efficient I/O between
VNFs and devices. Recently, by adopting the vhost-based network-
ing model [37], a VNF can directly access network packets in the
host kernel; thus, multiple packet copy steps across the hierarchical
layers are no longer required.

In the hypervisor layer, frequent state transitions can cause the
performance degradations of VNFs. Since VNFs necessarily require
network I/O, they frequently trigger I/O interrupts. Unfortunately,
when they trigger and receive interrupts, the state transitions of
VNFs occur, generating high overheads to manage the context
structures of VNFs. Moreover, even though a VNF is in an idle
state, a hypervisor cannot know its state until CPU resources are
allocated to the VNF. As a result, the idle state of a VNF can trigger
frequent context switches, wasting the CPU resources.

Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFVSOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Virtual switch layer: Virtual switches are a software layer that
resides in the host. They provide the networking connectivity for
VNFs. Similar to hardware-based switches, they also support vari-
ous management interfaces and protocols (e.g., NetFlow, OpenFlow,
GRE) for dynamic network management.

In general, virtual switches are often considered as performance
bottlenecks in NFV environments since all network workloads pass
through virtual switches and their complicated packet processing
logics can cause longer delivery time than those in hardware-based
switches. Thus, if a virtual switch is not accelerated or optimized for
packet processing, it could become a bottleneck point. Due to this,
previous studies [30, 32, 51] mostly focus on reducing the network
I/O and inter-VM communication overheads.

VNF layer: Virtualized network functions (VNFs) are the imple-
mentations of network services formerly carried out by dedicated
hardware, and they are operated on virtual machines (VMs) under
control of a hypervisor. Since those are executed on x86 machines,
they can be much more flexible than hardware-based appliances.

In the case of VNFs, most performance bottlenecks are found
from less-optimized implementations for the given network envi-
ronments. Before VNFs are released, developers usually optimize
them for general cases. However, it is possible that the performance
of VNFs is not maximized for certain cases.

2.2 Challenges in Existing Analysis Methods
As we noted above, there are many performance bottleneck points
in each NFV layer, and thus it is very hard for network operators
to specify which point(s) cause(s) performance bottleneck of NFV
when they face performance uncertainty. Moreover, if multiple
VNFs are correlated (i.e., service chaining), this situation is much
worse. Although they try to inspect the root causes of the prob-
lems, existing analysis methods have limitation on pointing out the
reasons due to the lack of understanding NFV environments. Here,
we elaborate on why existing analysis methods are insufficient for
the analysis of NFV environments and what makes difficult to find
the fundamental reasons of performance uncertainty of NFV.

C1) Function-specific Analysis Methods: The traditional
analysis methods can address performance issues within their lo-
cal coverages. Thus, to analyze the behaviors of VNFs, network
operators need a bunch of specialized analytical tools to extract
various performance-related information. For example, network
operators need multiple monitoring tools to collect host and VNF
resource usages respectively. In depth, if they want to analyze VNFs
in a systematic way (e.g., monitoring hardware-based performance
counters or system events), they have to utilize system-wide profil-
ing tools such as Perf [6] and Oprofile [38]. In terms of networking,
they need network utility tools (e.g., netstat) to monitor the network
statistics of each VNF. If they have the source code of VNF imple-
mentations, application profilers such as JProfiler [5] and GProf
[3] should be used to inspect the code. Unfortunately, they cannot
point out what is a fundamental performance bottleneck.

C2) Large Set of Unorganized Data: Even though network
operators collect all required features from various sources, they
need to analyze the collected data to figure out the faced problems.
In this case, according to how much accurate reasons network oper-
ators want, the amount of the data could become huge. Especially,

if they have the profile data from hardware and system events, the
size of the entire data significantly increases. In addition, VNFs are
highly related to network workloads; thus, they also need to collect
the features according to various workloads, which means that the
amount of the data would rapidly grow up and it could be beyond
their abilities. In the end, unless they have some knowledge about
how the features are correlated to each other in NFV environments,
it is hard to deal with the huge amount of the data to find the
fundamental performance issues.

C3)HiddenCorrelations betweenVNFs: NFV environments
are composed of multiple virtualization layers. Thus, there are lots
of variable factors that internally influence on the performance of
VNFs. For instance, the overheads from external factors (e.g., privi-
leged instruction emulation overheads in a hypervisor, network I/O
overheads in a virtual switch) are naturally involved in the process-
ing times of VNFs. Moreover, due to the different processing and
I/O waiting times of VNFs, hardware resources can be dispropor-
tionately allocated to VNFs. As a result, some of VNFs may waste
their CPU resources for meaningless state transitions not packet
processing. Besides them, not only VNFs but also the other NFV
entities (e.g., virtual NICs at VNFs, a virtual switch, and even a
hypervisor) utilize locks for multithreading. Unfortunately, their
lock contentions significantly reduce the available processing time
for each VNF. Likewise, without the knowledge of NFV environ-
ments, network operators can miss hidden issues and make a wrong
guess. That is why we need to understand NFV environments to
manifoldly analyze the root causes of performance issues.

2.3 Motivating Examples
The key benefit of NFV environmentswould be the flexibility of VNF
deployments. Network operators can dynamically deploy VNFs for
specific operating requirements. However, although they deploy
VNFs with the consideration of diverse environmental conditions
(e.g., available CPU and memory resources and network loads), it is
possible that those VNFs behave unexpectedly. Here, we show some
motivating examples supporting this claim. We deploy multiple
VNFs (Suricata-IPS, NAT, Tcpdump, Firewall, Netsniffer-ng) with
different chains (will be presented in each Figure, and each legend
represents the sequence of a service chain).

Performance issue when adding more VNFs: Figure 2 illus-
trates the throughput variations when additional VNFs are attached
to a service chain. The throughput of the service chain {Suricata-IPS,
NAT} is saturated near by the maximum throughput of Suricata-
IPS. However, when Tcpdump is added into the service chain, the
throughputs of the new service chain {Tcpdump, Suricata-IPS, NAT}
suddenly decreases. More surprisingly, the Tcpdump is a passive
VNF, which means that it does not directly affect the throughput of
a service chain because a virtual switch simply delivers incoming
packets to the Suricata-IPS right after copying the packets to the
Tcpdump. In turn, it is difficult to say that the Tcpdump is a per-
formance bottleneck with the only reason that the performance of
the service chain is dropped as soon as the Tcpdump is deployed.
In addition, it is unclear that either the Suricata-IPS or the NAT
is a bottleneck because the service chain with these VNFs previ-
ously shows reasonable throughputs. As a result, network operators

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Nam et al.

0

200

400

600

800

1000

200 400 600 800 1000

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

Suricata-IPS
Suricata-IPS,NAT
Tcpdump,Suricata-IPS,NAT
Tcpdump,Suricata-IPS,Firewall,NAT

Figure 2: Throughputs with the different number of VNFs

cannot simply determine which VNF causes the performance degra-
dation, and they eventually need the comprehensive analysis for
NFV environments to find the actual reasons.

Performance issue when changing VNF sequences: Figure
3 shows the throughput variations in different service chains with
the same VNFs. In this case, the throughputs of the service chain
{Suricata-IPS, Firewall, Netsniff-ng, NAT} are similar to those of
Suricata-IPS. However, the throughputs of the other chains signifi-
cantly decrease although the only change is the sequence of VNFs.
From this fact, we may think that when the NAT is followed by the
Suricata-IPS, the overall throughputs might be affected. However,
if a network operator only sees the throughputs of one of the three
service chains, he cannot infer that the NAT or the Suricata-IPS
might be a bottleneck. Furthermore, if he knows the previous per-
formance issue, he cannot determine which VNF (i.e., NAT or the
Suricata-IPS) may have a problem. Due to those reasons, to figure
out whether some of VNFs affect performance degradations or the
underlying infrastructure does, we need to analyze the entire NFV
environments rather than focusing on a specific case.

2.4 Our Approach
Our strategy to analyze performance issues in NFV environments is
four folds. First, we need to understand NFV environments as well
as the behaviors of VNFs in service chains. This gives insight into a
performance analysis methodology suitable for NFV environments.
Second, we need to build the various kinds of service chains with the
given VNFs. As shown in the previous examples, a simple sequence
change of a chain causes serious performance impacts. To consider
all possible cases in operation, we need to figure out exceptional
cases before VNFs are deployed. Third, we need comprehensive
monitoring and tracing mechanisms for both VNFs and the host.
More specifically, monitoring system resources at both VNF and
host sides allows to understand where system resources are mostly
used in the NFV hierarchical stack. Tracing the behaviors of VNFs
finds grounds to support the explanation of performance issues.
Lastly, we need a system that automatically analyzes the collected
data based on the NFV architectural characteristics and extrapolates
the root causes of performance issues with reliable evidences. We
explain the details of our system in the next section.

3 SYSTEM DESIGN
In this Section, we present Probius, an automated analysis system
to find out the reasons of performance uncertainties in NFV en-
vironments. The goals of Probius are to comprehensively extract

0

200

400

600

800

1000

200 400 600 800 1000

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

Suricata-IPS,Firewall,Netsniff-ng,NAT
Firewall,Netsniff-ng,NAT,Suricata-IPS
Netsniff-ng,NAT,Suricata-IPS,Firewall
NAT,Suricata-IPS,Firewall,Netsniff-ng

Figure 3: Throughputs with the different sequences of VNFs

performance features from the NFV hierarchical stack and to ex-
trapolate the root causes of performance uncertainties. To achieve
those goals, we first investigate the behaviors of VNFs along their
service chains in NFV environments (Section 4). With the knowl-
edge of NFV environments, Probius collects a bunch of performance
features from VNFs and the other NFV entities (e.g., a virtual switch
and a hypervisor) by monitoring the system resources of VNFs and
tracing the behaviors of VNFs (Section 5). Then, Probius discov-
ers performance issues and their reasons through the regression
analysis on the resource usages of VNFs and the behavior analysis
on VNF state transition graphs (Section 6). To make all analysis
procedures automated, we design an analysis framework that auto-
matically builds all possible service chains with the given VNFs and
emulates possible network workloads based on operator-defined
configurations.

3.1 Probius Architecture
Figure 4 illustrates the overall architecture of Probius. It is composed
of 6 main components (a service chain builder, a VNF manager, a
workload manager, a monitor, a tracer, and a performance analyzer).
In addition, Probius requires 3 types of configurations (global, VNF,
and service chaining policies) for automation.

Service chain builder: As a first step, an operator provides
Probius configuration - global, VNF, and service chaining policies
(please see Section 3.2) - to define working environments of a target
NFV. Then, the service chain builder generates all possible service
chains based on this configuration, considering service chaining
policies (if generated service chains violate the provided service
chaining policies, they will be ignored). After the generation of
service chains, the Probius system starts to analyze each service
chain case (i.e., one of the generated service chain) by iterating the
following procedures.

VNF manager: During the iteration for each service chain, the
VNF manager generates all possible resource constraints of VNFs
based on the provided global and VNF configurations. Then, it cre-
ates VNFs with each set of resource constraints for them. While
most NFV platforms have their own VNF management function-
alities, the underlying operational mechanisms are quite similar
to each other. They commonly adopt libvirt APIs [25] to manage
VNFs, and thus Probius also employs these APIs (of course, another
VNF management functions can be added to Probius).

After all resources of VNFs are configured, it creates a service
chain (i.e., selected service chain for this iteration). Each service
chain will be created by enforcing flow rules to network devices

Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFVSOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Operator

Probius
configurations

NFV environment

Virtual switch
Hypervisor

VNF VNFVNFVNF manager

Workload manager

Service chain builder

M
on

ito
r /

 tr
ac

er
Performance analyzer

Probius analysis system Host

Emulator
(Sender)

Host
Emulator
(Receiver)

Host

Figure 4: Probius architecture overview

(including virtual switches), and Probius employs a network device
management protocol (i.e., OpenFlow [41]) to flexibly create ser-
vice chains. In the case of inline VNFs, the inbound and outbound
interfaces of consecutive VNFs are simply chained. Between them,
passive VNFs are additionally attached to the last chaining point
when the passive VNFs are chained. More specifically, it addition-
ally put one or more output actions to duplicate incoming packets
for passive VNFs in the flow rule for forwarding the packets to the
next inline VNF.

Workload manager: The performance of VNFs will be highly
related to network workloads. Thus, the workload manager emu-
lates various kinds of workloads based on the given configurations.
For this, it manages external workload emulators (i.e., a sender
and a receiver). In terms of workloads, it generates various work-
load combinations with the different type of protocols (e.g., TCP,
UDP) and the different amount of network volumes (e.g., 100Mbps,
1Gbps). In the case of TCP, it also configures the number of sessions
to concurrently maintain. Under various network workload spec-
ifications, it controls the workload emulators to generate diverse
network workloads flexibly.

Monitor, tracer, andperformance analyzer: Using the above
components, Probius builds up the basis for the performance anal-
ysis of a service chain. Then, the monitor and the tracer start to
collect performance features (we describe the performance features
in Section 5). With those collected features, the performance an-
alyzer produces the explanations of the discovered performance
issues during analysis. These modules will be explained more in
the following sections.

3.2 Probius Configurations
For an automated analysis of NFV environments, Probius requires
three kinds of configurations (i.e., global and VNF configurations
and service chaining policies). Here, we describe those configura-
tions.

Global configuration: Probius requires the range of resource
constraints, and workload configurations. Resource constraints
indicate the pairs of the number of vCPUs and memory sizes. In
modern NFV platforms (e.g., OpenStack [10]), those pairs are called
as flavors. In the case of workload configurations, there are three
kinds of sub-configurations. First, it requires inbound and outbound
network interfaces to monitor the end-to-end throughput variations
of NFV environments. Then, it needs the IP addresses of workload
generators for management and data planes to control workloads
between them. Lastly, the characteristics of workloads (i.e., the

types of network protocols, the number of sessions, and the range
of network volumes) are necessary to emulate network workloads.

VNF configuration: Each VNF is defined with four parame-
ters: type, inbound and outbound interfaces, CPU and memory
constraints, management IP address and scripts. First, the type of
a VNF is determined as either inline (e.g., IPS, NAT) or passive
(e.g., IDS). Second, inbound and outbound interfaces are used to de-
fine service chaining points to receive and forward network traffic.
Thus, inline services require both inbound and outbound interfaces
while passive services only require an inbound interface. If net-
work operators want to restrict the range of resource constraints
against the global constraints, it is possible to refine them per VNF.
Unless the applications of VNFs are automatically executed once
their VMs are turned on, Probius manages VNFs through the given
management IP address and scripts. In the case of passive VNFs,
since they do not directly affect the performance of the following
VNFs, it is hard to measure their actual performance. Thus, the
stats script retrieves the statistics of passive VNFs from their logs
instead of simply monitoring their network statistics.

Service chaining policy: While network operators can stati-
cally make a service chain with VNFs, it is possible that they only
define the partial sequence of VNFs and the rest of VNFs could be
freely chained. Thus, Probius provides three types of policy opera-
tors to let them define basic requirements for service chaining. Then
Probius generates all possible service chains that satisfy the given
service chaining policies. Here is the description of each operator.

• AND (A & B): This operator indicates that VNF A and B
should be activated together. For example, if a network op-
erator defines a policy {Firewall & IPS}, Probius generates
possible service chains that both VNFs are always together.
• OR (A | B): This operator is used to activate either VNF
A or VNF B. If a network operator has two kinds of IDSs
and wants to deploy one of them since those IDSs have the
same functionality, he can use this operator and let Probius
analyze service chains with VNF A and VNF B respectively.
• FOLLOW (A > B): This operator defines a policy that VNF
B should be chained after VNF A. If a network operator
wants to deploy a firewall before a virtual router in the same
service chain, he can define a policy {Firewall > vRouter}.

4 EXAMINATION OF NFV ENVIRONMENTS
The most important step of the performance analysis in NFV en-
vironments is understanding the working behavior of the NFV
architecture. For such reason, here, we examine the behaviors of
VNFs based on the correlations with a hypervisor and other VNFs
in a service chain respectively.

4.1 VNF Workflow with a Hypervisor
In general, hypervisors (e.g., Xen, KVM) provide a number of trace
points at key locations inside of them. With those trace points, we
can get a picture of how VNFs work. While there are a bunch of
trace points (e.g., 52 trace points for KVM [12]), with our careful
analysis, we realize that we can determine the core workflow of a
VNF with six trace points (i.e., scheduled in and out, load and store
the virtual machine context structure (VMCS) of a VM, enter a VM,

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Nam et al.

VM_ENTRY

SCHED_SWITCH (in) SCHED_SWITCH (out)

VCPU_WAKEUP (wait)

VCPU_WAKEUP (poll)

USERSPACE_EXIT

Kernel space

Computation
Guest VM

Memory operations

Scheduled outScheduled in

I/O operations
Loading
VM metadata

Storing
VM metadata

VM_EXIT

Re-entering VM

User space

VMCS_MGMT (load)

VMCS_MGMT (unload)

Figure 5: The overall workflow of a VM

exit a VM, move to the host kernel) since those trace points are
necessarily passed when the state of a VM is changed.

Figure 5 illustrates the overall workflow of a VM. As CPU re-
sources are allocated to a VM, the vCPUs of the VM start to run
(VCPU_WAKEUP). Then, whenever a VM is activated or deacti-
vated, its context structure (VMCS) is loaded or unloaded respec-
tively (VMCS_MGMT). In terms of performance, the management
of the VMCS causes noticeable overheads. Then, the VM executes
the functionality of its VNF (VM_ENTRY). The time when a VM
is in this state is solely considered as the given time to the VNF. If
the VM requires some operations that need the access of memory
or I/O devices, the control flow of the VM is first moved to the
user-space of a hypervisor (VM_EXIT). Through the context of
VM_EXIT trace points, we can figure out the reasons of the exits
(e.g., EXTERNAL_INTERRUPT, IO_INSTRUCTION, and HLT). In
the case of memory operations, the control flow of the VM is mostly
returned back right after the operations are done. However, if the
required operations need privileged permissions (e.g., the access
of I/O devices), the control flow of the VM is further moved to
the kernel-space of the hypervisor (VM_USERSPACE_EXIT). Then,
the hypervisor handles the given operations for the VM. Likewise,
whenever a VM requires some privileged operations, the operations
should be passed through a long path (i.e., from a guest VM to the
kernel-space of the hypervisor), causing significant overheads due
to multiple state transitions only for a single operation. In turn,
frequent privileged operations reduce the available processing time
of the VM in the given quantum time. Once the given quantum
time to the VM is consumed, the current VMCS of the VM is stored
and the CPU resources are reallocated to another VM.

Through the workflow of a VM, we can extract four important
features. First, we can see how much time a VNF consumes its
CPU resources only for packet processing since there are many
additional steps to handle privileged operations and to manage a
VM itself. Second, we can know the reasons of VM state transitions.
This allows to understand how frequently specific operations are
triggered and how much time those operations consume. Third,
the total time that a VM consumes indicates how much resources
are allocated to a VM compared to those of other VMs. Besides
them, we can infer the processing delay of a hypervisor for specific
operations and the performance of the hardware in the host. In sum,
those features allow to understand the behaviors of both VNFs and
the underlying infrastructure in detail.

Virtual switchIn Out

Firewall IPS Network analyzer NAT
Duplicate

(Inline) (Inline) (Inline)(Passive)

Forward ForwardForward

Figure 6: The example of a service chain

4.2 VNF Workflow in a Service Chain
In a service chain, the performance of a VNF is significantly impor-
tant to the other VNFs since it can limit their maximum throughputs.
For example, if it takes a long time to process packets in a VNF,
the following VNFs could be idle during the packet processing
time of the previous VNF. Likewise, VNFs are highly dependent on
each other. However, VNFs are not the only ones that influence on
their performance. Under those VNFs, a virtual switch is actually in
charge of all packet delivery among VNFs. In turn, the performance
of a virtual switch can also influence on the performance of VNFs.

Figure 6 shows the example of a service chain with four VNFs.
From this example, we can see three possible performance problems
due to the pipelined processing. First, as we discussed before, if
the packet processing delay from the IPS is long, the following
VNFs (the Network analyzer and NAT) can be frequently in an
idle state. As a result, the overall performance of the service chain
would be saturated under that of the IPS. Second, in the view of a
virtual switch, due to the low performance of the IPS, the packets
received from the Firewall should be kept in the queues inside
of the virtual switch. In this case, it is possible that the switch
consumes more CPU resources to manage its queues than to deliver
packets to VNFs. In the worst case, if the queues in the virtual
switch are overflowed due to the slow rate of packet consumptions
by VNFs, new incoming packets are inevitably dropped, causing
the incorrect operational behaviors of VNFs. In addition, the similar
situation can happen in the VNF that shows the low performance.
When the packet buffer of the VNF becomes full, the incoming
packets have to be dropped, resulting in the same problem with
the case of the virtual switch. Third, in the case of passive VNFs,
a virtual switch duplicates incoming packets and delivers them to
both passive VNFs and the next inline VNF. Since a virtual switch is
a software implementation, the packet copy overheads (especially,
for large packets) affect the performance of the switch [29]. In turn,
the performance degradation of the switch can result in the entire
performance degradation of VNFs.

Through those possible performance problems, we can get three
meaningful features. First, the performance difference between
adjacent VNFs can be useful to narrow down the possible points
of performance issues. Second, the length of queues in a virtual
switch can be used to infer how fast each VNF processes packets
and which VNF increases the overall processing delay in a service
chain. Lastly, we can infer the packet processing load of a virtual
switch based on its CPU utilization.

5 PERFORMANCE FEATURE COLLECTION
On the basis of understanding NFV environments, we define a set of
performance features that are useful for reasoning unexpected per-
formance issues. Then, we describe the comprehensive monitoring
and tracing mechanisms of the Probius system.

Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFVSOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Virtual switch layer

Hypervisor layer

Hardware layer

VNF VNF VNF

VNF side:
CPU percent, CPU time (system, user times)
MEM usage, total/used mem size
Disk read/write I/O requests and bytes
Received and sent packets and bytes

VM VM VM
Host side:
CPU percent, CPU time (system, user times)
The number of I/O threads and context switches
The frequency and time of VM state transitions

Host side:
Total CPU percent and time (system, user times)
MEM usage, total/used mem size

Host side:
Received and sent packets and bytes at NICs
End-to-end latency of a service chain

Host side:
CPU percent, CPU time (system, user times)
The length of queues in a virtual switch

Figure 7: Performance features

5.1 Performance Features
From the analysis of NFV environments, we realize the importance
of the state transitions of VNFs and the packet processing behavior
of a virtual switch. Here, with the features discovered in Section 4,
we define a set of performance features for the NFV architecture.

Figure 7 illustrates the feature set of each layer in NFV envi-
ronments. Among those features, most layers interestingly have
CPU-related metrics. However, the CPU usage of each layer has a
different meaning. For example, at the VNF side, it indicates how
much vCPU resources a VNF consumes. On the other hand, at
the VM side, it indicates how much time a VM spends for state
transitions (user time) and waits for privileged operations (system
time). Theoretically, the CPU time of a VM is considered as the
sum of the user time spent by the user space of a hypervisor (e.g.,
QEMU), the system time spent by the kernel space of a hypervi-
sor (e.g., the KVM module), and the guest time spent by a VNF.
By extracting CPU usages in various sources, we can thus narrow
down the possible locations of performance problems. In terms of
the visibility of performance issues, the network statistics of VNFs
are the most distinguishable factors that we can easily get close to
performance issues. For example, if the throughput variation of a
hop between certain VNFs in a service chain is bigger than those
of the other hops, we can regard that the service chain may have
some performance issues and we can first look into those VNFs at
the suspicious hop during performance analysis.

Besides them, we can use several features for specific purposes.
In terms of disk performance problems, disk I/O usages at the VNF
side and the number of I/O threads at the VM side can be used as
the clues for reasoning the issues. The number of context switches
at the VM side can be used to infer the frequency of the idleness in
a VM. The total CPU usages at the host side can used to understand
how much CPU resources are used for the entire VNFs. From these,
we can make sure whether some performance degradations happen
due to the lack of system resources or not. Likewise, the features
for each layer are useful to address the possibility of performance
issues against specific NFV entities.While most features can be used
to narrow down the possible locations of performance issues, the
frequency and time of VM state transitions can be used to closely
point out the root causes of the issues by investigating how much
time VNFs are in certain states and what cause state transitions.

Table 1: The form of raw data classifications

Performance feature i
Service chain VNF Proto/BW Value Stdev

VNF1(4), VNF2(2),VNF3(2) VNF1 TCP / x y σ

5.2 Monitoring and tracing VNFs
To monitor NFV entities including VNFs, Probius has three types
of monitors: an internal VNF monitor, an external VNF monitor,
and a host monitor. First, the internal VNF monitor collects the
features (e.g., vCPU, memory, disk, and network usages) at the VNF
side. In general, if we can monitor those features inside of a VM,
more accurate data can be retrieved. However, there are a bunch
of VNF packages [53, 58] that have their own customized operat-
ing systems in real environments; thus, we cannot apply general
analysis tools to monitor the features. For such reasons, Probius
utilizes virtualization APIs [25] that allow to extract the features
in the middle of VNFs and a hypervisor. Second, the external VNF
monitor keeps track of the features of VNFs, but it monitors them
at the host side. In the view of a host, each VNF is considered as a
single process. With this fact, it retrieves the features on the VM
processes corresponding to VNFs. Lastly, the host monitor covers
the other features for the virtual switch, hypervisor, and hardware
layers. Similar to the external VNF monitor, it also extracts the
features for those layers from the system information of the host.

While multiple monitors give an insight into the global view of
the NFV infrastructure, the VNF tracer reduces the semantic gap
between the collected features and the actual workflows of VNFs.
During the feature collection by the monitors, the VNF tracer keeps
track of the trace points of a hypervisor for each VNF. Then, it
maintains those trace points in the form of a graph. Each vertex
presents a trace point and its data, and each edge presents the pair
of {previous trace point, its data} and {current trace point, its data}
with two properties: a counter and a consuming time. In the end, the
generated graphs for VNFs are utilized in the performance analysis
discussed in the next section.

6 ANALYSIS OF PERFORMANCE ISSUES
To extract the correlations among performance features and to
provide the explanations of performance issues, the performance
analyzer conducts three major steps: prerequisite, performance
anomaly detection, and graph-based behavior analysis.

6.1 Prerequisite for Analysis
The prerequisite step is to convert raw data to the organized forms
for the performance analysis. For this, the analyzer first removes
measurement errors from the raw data and then classifies the re-
fined data according to performance features.

In terms of measurement errors, it is possible that a measured
value could be suddenly lower or higher than the other values in
an instant when a monitor measures the value. Since that kind of
measurement errors can mislead performance issues, the analyzer
filters out them by using interquartile range (IQR), which is a simple
method to detect outliers in a dataset. After the analyzer excludes
outliers, it takes the average of the remaining values and their
standard deviation as representative values for the corresponding

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Nam et al.

Suricata-IPS,Netsniff-ng

Suricata-IPS,NAT

Firewall,Suricata-IPS

Netsniff-ng,Suricata-IPS

NAT,Suricata-IPS

0

0.04

0.08

0.12
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

C
oo

k'
s d

is
ta

nc
e

Test cases

Figure 8: Cook’s distances with 2-VNF service chains

features. As shown in Table 1, those values are classified according
to performance features for each service chain.

6.2 Performance Anomaly Detection
In general, if there is no performance anomaly, the results of most
service chains are similar to each other. With this in mind, we adopt
a regression analysis technique (i.e., Cook’s distance [27]) to find
out service chains that connote performance problems. The basic
idea is that if the collected data of a specific service chain (i.e., an
abnormal case) are added into the dataset for all service chains, the
change in slope between the original regression line and the new
regression line noticeably occurs. Thus, we can figure out the most
influential service chains (i.e., the suspects of performance issues)
among the entire service chains.

To sort out suspicious service chains, Probius calculates Cook’s
distanceD of performance features for each service chain as follows.

ŷi = ȳ + (

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)
2) (xi − x̄) (1)

where n is the number of the dataset, xi is the ith observation
point and yi is the ith observed value. x̄ and ȳ are the means of the
observation points and values respectively.

ri = yi − ŷi (2)

hi =
1
n
+

(xi − x̄)
2∑n

j=1 (x j − x̄)
2 (3)

where ri and hi is the redidual and leverage of the ith observation
point.

MSE =

∑n
i=1 (ri − r̄)

2

(n − k − 1)
(4)

where MSE indicates the mean squared error for the given data. k
is the number of independent variables in a model; thus, k = 1 in
this model.

Di =

∑n
j=1 (ŷj − ŷj (i))

2

(k + 1)MSE
=

r2
i

(k + 1)MSE
(

hi
(1 − hi)2

) (5)

where ŷj (i) is ŷj that does not include the ith observations.
Figure 8 shows the distances (y) of the network volumes (x)

according to the final throughputs of each service chain in the 2-VNF
cases. From the distances, we can easily figure out which service
chain shows different throughputs compared to those of the other
service chains. In the sameway, Probius also computes the distances
for the other features of each service chain. In the end, Probius
sorts all service chains according to the average of the computed

Table 2: The criteria for workflow classification

Category State transitions / VM exit reasons
VM initialization vCPU preemption - vCPU wakeup - VMCS load - VM entry
Hard switch
(to the kernel)

vCPU preemption, but VMCS unload
Userspace exit - VMCS unload

Soft switch
(to the user-space) vCPU preemption - halt poll, vCPU wakeup - VM entry

Computation VM entry - VM exit

Memory
access

VM exit(msr) - apic, msr - VM entry, emulate insn
VM exit(ept misconfig) - emulate insn - MMIO
- userspace exit, VMCS (un)load, VM entry
VM exit(ept violation) - page fault - VM entry
Exit reasons: MSR/APIC read, MSR/APIC write

EPT violation, EPT misconfig

Interrupt

VM exit - VMCS unload, vCPU preemption
Asynchronous trace points (e.g., IRQ)
Exit reasons: Pause instruction,

External interrupt, pending interrupt
Exception NMI, EOI induced

I/O operation
VM exit - emulate insn - userspace exit, VM entry
VM exit - PIO - userspace exit, VMCS (un)load, VM entry
Exit reasons: IO instruction

Idleness VM exit - VMCS unload, vCPU wakeup, VM entry
Exit reasons: HLT

N/A (not assigned) VMCS unload - vCPU preemption

distances and regards the service chains whose distances exceed a
specific threshold as suspects. Here, we use 4/n as a threshold [24].

6.3 Behavior Analysis of Suspicious VNFs
From the previous step, Probius statistically excludes most reason-
able cases and leaves a small number of service chains that need
to be deeply inspected. In this step, Probius focuses on the feature
variations and working behaviors of VNFs in each service chain.
To point out specific reasons among all possibilities, Probius takes
the results of single VNF cases as ground truths.

In terms of feature variations, when a service chain is considered
as a suspicious one, Probius compares and analyzes the data of
each VNF in the service chain with those in the ground truths. For
example, as shown in Figure 8, the service chain {Tcpdump, Suricata-
IPS} is regarded as a suspicious one. Thus, Probius first compares the
throughput of each VNF in the service chain with the throughput
of the VNF in the ground truths. Then, it sequentially compares
the values corresponding to performance features (e.g., CPU usage,
CPU time, and disk usage) with those in the ground truths, and
chooses suspicious features by checking if those features are within
the error boundaries (y ± 3σ where y is the representative value
and σ is its standard deviation in single VNF cases). Through the
comparative analysis, Probius extracts which performance features
are mostly changed compared to the ground truths.

As the last step, the goal of behavior analysis is to specifically
point out the reasons of performance issues. With the state transi-
tion graphs for each VNF, Probius computes how frequently each
state transition is triggered and analyzes why the state transition
happens. To narrow down the range of possible performance is-
sues, it categorizes the state transitions of VNFs according to the
functionalities of a hypervisor. Table 2 presents the criteria for
VNF workflow classification. In terms of VNF-related operations,
Probius divides them into four categories: computation, memory
access, interrupt, and I/O operation. Those categories determine
the characteristics of VNFs. For example, if there are a bunch of VM

Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFVSOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

exit(hlt)

exit(pause_instruction)

cpuid
msr

mmio

exit(exception_nmi)

exit(cpuid)exit(io_insturction)

exit(ept_misconfig) exit(msr_write)

exit(external_interrupt)

exit(ept_violation) page_fault

vcpu_wakeup(wait)

apic

halt_poll_ns

emulate_insn

pio

vcpu_wakeup(poll)

userspace_exit

pause_loop_exit

vmcs(load)

vmcs(unload)
entry

Figure 9: The behavior classification of a VNF

exits due to ‘Pause instruction’, it can infer that a VNF internally
suffers severe lock contentions. If the computation time of a VNF
is close to the given time to the VNF by a hypervisor, it can infer
that the VNF is highly compute-intensive. In terms of hypervisor-
related operations, unlike a general process running on a host, there
are additionally required steps (e.g., loading the context of a VM,
switching the execution mode of a VM) to execute the functionality
of a VNF. Thus, the other categories are used to express the be-
haviors of a hypervisor. Since VNFs share all CPU times with each
other, Probius separately maintains the time spent for other VMs
by marking ‘N/A’ that means system resources are not assigned
to a VNF. After categorizing the state transitions for each VNF
as shown in Figure 9, Probius evaluates the portion variations for
each VNF compared to those in the ground truths. In the long run,
Probius summarizes the whole results (i.e., suspicious performance
features and their variations, the portion variations in terms of the
behaviors of VNFs) and lets network operators understand their
performance issues.

7 IMPLEMENTATION
The Probius system is implemented with 4.2KLoC in Python. In
terms of monitoring resource usages, we utilize libvirt [25] and
psutil APIs [13] to monitor them at the VNF side and the host side
respectively. In order to keep track of KVM events, we use Ftrace
[2] that is a tracing framework for the Linux kernel. Specifically, we
take the event traces (i.e., the workflows of VNFs) through Trace-
cmd [20] which is a front-end tool for Ftrace. For the visibility of
VNF workflow, the traced data are maintained as the forms of a
vertex and an edge by using Graph-tool [28]. Then, the collected
data from the monitor and tracer are stored in SQLite3 [16], which
is a lightweight and self-contained database engine. While Probius
uses iPerf3 [4] as the default workload generator, any traffic gener-
ators can be replaced. In order to analyze the data, we use Numpy
[9], Pandas [11], and statsmodels [17] to calculate Cook’s distances
for performance features. The source code of the Probius project
will be released at https://github.com/sdx4u/probius.

8 USE CASES
Now, we demonstrate how Probius reasons out performance issues
with various service chains. Then, we discuss the reasons of the
performance issues found from the Probius analysis.

Test environments: Weuse an experimental environment com-
prising of 3 machines to evaluate VNFs with the Probius prototype

implementation. Two systems are used for workload generation.
Each of these systems is equipped with an Intel Xeon E5-1650 CPU
processor and 16GB of RAM. The last system is used for a NFV envi-
ronment with the KVM hypervisor, running an Intel Xeon E5-2630
processor with 64GB of RAM.

VNF configurations: We deploy 7 open-source VNFs widely
used for network and security services (i.e., Tcpdump [19] and
Netsniff-ng [8] traffic analyzers, iptables-based firewall and NAT
[7], a Snort IDS [14], Suricata IDS and IPS [18]). As a virtual switch
managing the connectivity among VNFs, we use Open vSwitch
v2.0.2 [47]. In terms of configurations, we basically use their default
configurations with minor changes. For the firewall case, we insert
100 rules (randomly generated 99 unmatched rules and a matched
rule for workloads sequentially). We set a NAT environment using
the MASQUERADE function. In the case of the Snort IDS, we use
the official rules for Snort 2.9 [15] (4K TCP rules). For the Suricata
IDS and IPS, we use the Emerging Threats Open rulesets [1] (4K
TCP rules) and execute them as AF_PACKET run-modes. Lastly,
we use default configurations for Tcpdump and Netsniff-ng.

8.1 VNF analysis
To get the ground truths for further analysis, Probius first analyzes
each VNF. Here, we describe the noticeable results in single VNFs.

The characteristics of VNFs: With Probius, we can easily
draw the overall resource usages of VNFs, and determine their
characteristics. As shown in Figure 10-12, most VNFs show their
throughputs as high as the hardware limitation (i.e., 1Gbps) with
2 vCPUs while Snort-IDS and Suricata-IDS show their maximum
throughputs (763.2, 753.4 Mbps respectively) with 4 vCPUs. Unlike
those VNFs, the throughput of Suricata-IPS is saturated at 489.2
Mbps even though the Suricata-IDS and the Suricata-IPS have the
almost same functionalities (we discuss this reason later). In terms
of memory usages, NAT and Firewall consume 8.74%, and Snort-IDS
and Suricata-IDS/IPS utilize 12.92% of the given memory (i.e., 4GB).
On the other hand, the memory usages of Tcpdump and Netsniff-ng
keep increasing (up to 72.2% for Netsniff-ng, 44.6% for Tcpdump)
as incoming network volumes increase. Their disk I/O usages also
have similar trends while the other VNFs barely trigger disk I/O.

From the results, we can conclude that Tcpdump and Netsniff-
ng have disk I/O intensive tasks, and Snort and Suricata show
CPU intensive characteristics. Firewall and NAT are network I/O
intensive VNFs.

The hidden CPU consumptions of VNFs: In general, most
monitoring systems focus on VNFs themselves. However, with our
careful analysis, we realize that there are several processes (e.g.,
vhosts) that support VNFs outsides of them. For example, vhosts
are created as many as the number of network interfaces in VNFs.
However, none of current monitoring systems cumulate the CPU
usages of those processes when they monitor VNFs. That is because
they monitor the resource usages of VNFs by observing those of VM
processes or collecting them through virtualization APIs. Figure
13 shows CPU usages and extra CPU usages for each VNF. In the
case of inline VNFs, they have inbound and outbound interfaces;
thus, they mostly have doubled extra CPU usages compared to
passive VNFs. While the extra CPU usages of each VNF might be
small compared to the original CPU usages, the cumulated extra

https://github.com/sdx4u/probius

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Nam et al.

0

80

160

240

320

400

0

200

400

600

800

1000

200 400 600 800 1000

C
PU

 u
sa

ge
 (%

)

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

Tcpdump CPU usage Netsniff-ng CPU usage
Tcpdump throughput Netsniff-ng throughput

Figure 10: Tcpdump vs. Netsniff-ng

0
80
160
240
320
400

0
200
400
600
800

1000

200 400 600 800 1000

C
PU

 u
sa

ge
 (%

)

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

Snort-IDS CPU usage Suricata-IDS CPU usage
Suricata-IPS CPU usage Snort-IDS throughput
Suricata-IDS throughput Suricata-IPS throughput

Figure 11: Snort-IDS vs. Suricata-IDS/IPS

0

80

160

240

320

400

0

200

400

600

800

1000

200 400 600 800 1000

C
PU

 u
sa

ge
 (%

)

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

Firewall CPU usage NAT CPU usage
Firewall throughput NAT throughput

Figure 12: Firewall vs. NAT

122.8 102.1
171.7

345.9 313.1

107.8 104.5

40.8 45.3
27.5

30.0
38.3

25.9 24.6

0

80

160

240

320

400

NAT Firewall Snort Suricata Suricata Tcpdump Netnisff

C
PU

 u
sa

ge
 (%

)

VNFs

CPU usage
Extra CPU usage

IDS IDS IPS ng

Figure 13: CPU and Extra CPU usages
for each VNF

0

80

160

240

320

400

0

200

400

600

800

1000

200 400 600 800 1000

C
PU

 u
sa

ge
 (%

)

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

NAT CPU usage Suricata-IPS CPU usage
NAT throughput Suricata-IPS throughput

Figure 14: Throughputs of Suricata-IPS
and NAT with Intel E1000

E1000 VirtIO

0

5

10

15

20

Suricata-IPS NAT Suricata-IPS NAT

Ex
it

tim
e

(m
s)

PAUSE_INSTRUCTION EXTERNAL_INTERRUPT
IO_INSTRUCTION MSR_WRITE
HLT

Figure 15: Exit reasons of Suricata-IPS
and NAT with different NICs

CPU usages for all VNFs could be higher than that of a single VNF.
Thus, those extra CPU usages could be a critical factor when the
resource usages of VNFs are used as the guideline for VNF resource
allocation or auto scaling.

The performance inversions with different NICs: In NFV
environments, the VirtIO driver is used as the default network driver
since it can directly access network packets in the host kernel. Thus,
with VirtIO NICs, most VNFs show high throughputs. However,
Suricata-IPS shows much lower performance than the others.

To see the reasons of the performance degradation, we look
into the state transitions and VM exit reasons of Suricata-IPS and
NAT for comparison. In terms of time consumption, Suricata-IPS
(0.078/s for computation, 0.29/s in total) has slightly more time
than NAT (0.032/s for computation, 0.22/s in total). They mostly
consume their time for state transitions due to idleness (0.11/s
in Suricata-IPS, 0.16/s in NAT). However, as shown in Figure 15,
Suricata-IPS triggers doubled I/O instructions (0.019/s) compared to
those (0.001/s) of NAT and those I/O instructions eventually cause
the hard switches of the Suricata-IPS. On the other hand, when we
change their drivers to Intel E1000, the throughput of Suricata-IPS
highly increases up to 780.3 Mbps, but the throughput of NAT sud-
denly decreases under 575.4 Mbps. In terms of time consumption,
Suricata-IPS (0.76/s) has much more time than the case with the
VirtIO driver although NAT has a similar time (0.21/s) with the
previous case. With the new driver, the time for hard switches in
Suricata-IPS decreases (-65%), resulting in the throughput improve-
ment, but the time for soft switches in NAT increases (+43%) while
the time for hard switches is almost the same (+1.6%).

In sum, the reason of the performance degradation in Suricata-
IPS is that Suricata-IPS consumes the large amount of CPU re-
sources for I/O operations to send out packets rather than process-
ing packets. In terms of performance inversions, the hard switch
overheads of Suricata-IPS are significantly reduced by switching

virtual NIC drivers; thus, Suricata-IPS can process more packets. In
contrast, NAT with the E1000 driver uses more CPU resources than
that with the VirtIO driver for state transitions. As a result, those
state transitions unfortunately result in performance loss.

8.2 Service chain analysis
Even though single VNFs show high throughputs, it is possible
that some of VNFs in the same service chain can cause resource
contentions with each other. In addition, the operations of VNFs
could influence on the throughputs of the subsequent VNFs. Here,
we confirm those possibilities with actual cases.

The context switch overheads of VNFs: In NFV environ-
ments, context switches require a large amount of time due to
loading and unloading the context structures of VMs. Thus, when
the control flows of VNFs are moved to the host and moved back
in VNFs, unnecessary CPU resources are consumed. Unfortunately,
the idleness of a VNF triggers a bunch of context switches. Figure 16
shows the CPU usages of Tcpdump in two different service chains:
{Tcpdump, NAT} and {Tcpdump, Suricata-IPS}. Unlike the former
case, even though the input volumes (i.e., 200 and 400Mbps) are low,
the CPU usages of Tcpdump in the latter case are similar to those
with the higher network volumes. By looking the analysis results
(Figure 17), we realize that when Tcpdump runs with Suricata-IPS,
it frequently becomes in an idle state; thus, unnecessary CPU con-
sumption significantly increases its CPU usages.

The adverse effect between VNFs: From Figure 2 in Section
2.3, we find that the throughput of the service chain {Tcpdump,
Suricata-IPS, NAT} suddenly decreases compared to that of the
service chain {Suricata-IPS, NAT}. To figure out the reasons of this
performance degradation, we see the state transitions and VM exit
reasons of both service chains. In terms of time consumption, a
hypervisor fairly distributes time to all VNFs. However, in terms
of their computation times, the times for Suricata-IPS and NAT

Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFVSOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

0

40

80

120

160

200

0

200

400

600

800

1000

200 400 600 800 1000

C
PU

 u
sa

ge
 (%

)

Th
ro

ug
hp

ut
 (M

bp
s)

Workload (Mbps)

Tcpdump → NAT CPU usage Tcpdump → Suricata-IPS
Tcpdump → NAT throughput Tcpdump → Suricata-IPS

Figure 16: High CPU usages of Tcpdump
due to context switches

200 Mbps 400 Mbps

0
0.1
0.2
0.3
0.4
0.5

TD TD-NAT TD-IPS TD TD-NAT TD-IPS

Ex
it

tim
e

(s
ec

)

MSR_WRITE EXTERNAL_INTERRUPT
PAUSE_INSTRUCTION IO_INSTRUCTION
HLT

Figure 17: Exit reasons of Tcpdump
in different service chains

0.2

0.25

0.3

0.35

0.4

Suricata-IPS NAT Tcpdump Suricata-IPS NAT

Ex
it

tim
e

(s
ec

)

HLT IO_INSTRUCTION
PAUSE_INSTRUCTION EXTERNAL_INTERRUPT
MSR_WRITE

2-VNFs 3-VNFs

Figure 18: Exit reasons of VNFs
in different service chains

VNFs

50

150

250

350

NAT Firewall Netsniff-ng Suricata-IPS

C
PU

 ti
m

e
(m

s)

Soft switch Hard switch
Computation Memory access
Interrupt Idleness

Figure 19: Behavior classification of
VNFs in a normal service chain

VNFs

50

150

250

350

NAT Firewall Netsniff-ng Suricata-IPS

C
PU

 ti
m

e
(m

s)
Soft switch Hard switch
Computation Memory access
Interrupt Idleness

Figure 20: Behavior classification of
VNFs in a problematic service chain

0.76
8.83

81.9

52.6

0

20

40

60

80

100

Setup Collection Conversion Analysis

C
PU

 u
sa

ge
 (%

)

Steps

With a single CPU

Figure 21: CPU usages for each
processing step in Probius

decrease by 61% and 28.1% respectively when the Tcpdump is added
into the service chain. In addition, when we see the VM exit reasons
as shown in Figure 18, the portion of I/O instructions and MSR
operations in Suricata-IPS (3-VNFs) are reduced by 55.5% and 85.6%
respectively compared to those in the Suricata-IPS (2-VNFs). The
portion of I/O instructions in NAT (3-VNFs) is also reduced by 82.2%,
but the idleness of the NAT (3-VNFs) increases by 134%.

Based on those facts, as soon as the Tcpdump is added to the
service chain, the other VNFs face I/O contentions and those con-
tentions significantly drops the overall throughputs of the new
service chain. However, it does not mean that one of the VNFs is a
bottleneck since the Tcpdump triggers some overheads to the other
VNFs. As a result, the performance degradation comes from the I/O
bottleneck in the underlying infrastructure.

The importance of chaining orders: As shown in Figure 3,
we find that the throughputs of service chains can be changed ac-
cording to the sequence of VNFs. Here, we identify the reasons
of the performance variations with two service chains: {Suricata-
IPS,Firewall,Netsniff-ng,NAT} as a normal case and {Netsniff-ng,NAT,
Suricata-IPS,Firewall} as a problematic case.

Figure 19 and 20 present the behavior classification results of the
normal and problematic service chains respectively. In the normal
case, all VNFs have similar time (0.24/s on average) to execute their
functionalities. In contrast, the NAT in the problematic service
chain only has 0.16/s and the other VNFs have a little bit more time
(0.26/s on average) than the NAT. The reason that the NAT has
less time than the others is due to frequent hard switches for I/O
operations. The NAT triggers hard switches for 18.6 times in the
normal case but 785.9 times in the problematic case. While the time
to handle hard switches is relatively smaller than the times for the
other categories, they significantly reduce the available time for the
NAT. Similarly, the hard switches of the Netsniff-ng increase from

19.4 to 900.7 times and this situation could be found in its system
time (0.77 in the normal case, but 1.45 in the problematic case).

In turn, the resource contentions between the Netsniff-ng and
the NAT trigger the overall performance degradation. Here, the
reason that the normal service chain shows higher throughputs is
due to the low throughput of the Suricata-IPS. Since the Suricata-
IPS sends out incoming packets at the beginning with a low speed,
it could naturally control the I/O contentions of the following VNFs.
This trend could be found in the other service chains as well.

9 SYSTEM EVALUATION
In this section, we evaluate the overheads caused by the Probius
system. For this, we divide the whole analysis processes into four
steps: VNF setup, feature collection, raw data conversion, and analy-
sis. The VNF setup includes VNF resource allocations, service chain
creations, and workload generations. The feature collection indi-
cates the step to monitor and trace VNFs. In terms of performance
analysis, we measure the CPU usages for the prerequisite step (i.e.,
raw data conversion) and the actual analysis step separately.

Figure 21 shows how much CPU resources each step consumes.
Among the major steps, the CPU usage for the VNF setup is negli-
gible (0.76% on average). Similar to the VNF setup, the collection
step consumes 8.83% of CPU resources on average that is only a
small portion against the entire CPU resources (2,000% in our test
environment with 20 cores). While Probius monitors the resource
usages of VNFs per second, the measured CPU consumptions are
higher than what we expected. With our careful analysis, we realize
that Probius monitors the resource usages of VNFs by creating two
monitoring threads (one for the VNF-side and the other for the
host-side) of each VNF for every second. Thus, Probius consumes
CPU resources due to managing the monitoring threads rather than
monitoring VNFs. The raw data conversion shows the highest CPU

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Nam et al.

consumption (81.9% on average). This is because the amount of the
raw data is huge and the jobs to convert the raw data to our classi-
fied forms for analysis are highly CPU-intensive. The last step (i.e.,
the VNF analysis step) shows 52.6% CPU consumption on average.
During this step, most CPU consumptions come from the query
overheads to access the Probius database. In turn, the raw data
conversion and analysis steps show relatively higher CPU usages
than the others. However, those steps could be done outside of the
host. Therefore, each step requires less than 100% CPU resources,
which means a single CPU is enough to handle the Probius system.

10 RELATEDWORK
NFV Performance Optimization: There are a number of studies
tackling the performance problems in NFV environments. In terms
of inter-VM communications, NetVM [32, 61] provides zero-copy
packet delivery across a chain of VNFs through its shared memory
architecture. Similarly, xOMB [21], CoMb [56] focus on flexible
management of networks and high-speed packet forwarding. In the
case of ClickOS [40], it is designed for a high-performance virtu-
alized middlebox platform while reducing VM instantiation times
on Click modular router [36]. FreeFlow [60] improves the network
performance of containers by making a hole (i.e., shared memory,
RDMA) between trusted containers. Besides the optimization of
NFV platforms, high-performance network I/O engines such as
Netmap [50], DPDK [33], and PF_RING [45] are widely used to
boost up NFV performance by providing direct access to the ring
buffers in a NIC, using custom network drivers. While those studies
highly improve the NFV performance, traditional hypervisors (e.g.,
KVM, Xen) and software switches (e.g., Open vSwitch) are still
widely used in real NFV environments; thus, network operators
unfortunately suffer various performance issues.

System-wide VNF analysis: Xenoprof [31] is a system-wide
profiler targeting virtual machines for the Xen hypervisor [23].
To extract the profiling events in guest VMs, it deploys the modi-
fied Oprofile [38] into the guest VMs and takes the event samples
through hypercalls. Perfctr-Xen [44] is another profiler for the Xen
hypervisor. The key idea of Perfctr-Xen is to directly access hard-
ware performance counters in guest VMs by installing a hypervisor
driver and a guest kernel driver. Linux perf [6] is recently extended
to profile VMs running in the KVM hypervisor by extracting event
samples from guest VMs through their virtual CPU states. Although
those tools allow network operators to investigate their VNFs in
depth, they severely cause the high CPU overheads to extract hard-
ware events. For such reasons, Probius utilizes kernel-level trace
points, which is much lighter than hardware-based performance
counters. As a result, Probius can analyze VNFs without additional
performance degradations of VNFs.

Inter-VM Performance Interference: In terms of the perfor-
mance interference analysis between VMs, Koh et al. [35] study the
effects of inter-VM interference by collecting the runtime perfor-
mance characteristics of the different types of Linux applications.
In contrast, Pu et al. [48] focus on a dedicated performance inter-
ference on network I/O running in separate VMs. Similarly, Mei
et al. [42] show the performance study of network I/O workloads
in a virtualized cloud environment. While previous studies mostly

concentrate on the phenomenon of VMs in terms of performance,
they could not look into the reasons of the phenomenon. In fact, our
work covers the previous studies and even discovers the reasons of
performance issues in depth.

Network-wide VNF analysis: So far, there are a few studies
[39, 43, 52] aiming at analyzing VNFs to figure out performance
issues in NFV environments. In the case of NFVPerf [43], it mon-
itors the network statistics among VNFs and finds a bottleneck
point in a service chain. For this, it sniffs packets on all inter-VM
communication paths and computes per-hop throughputs and de-
lays. M. Peuster et al. [39] analyze the performance behavior of
VNFs by monitoring the throughput changes according to different
resource restrictions. Unfortunately, those studies only detect some
abnormal behaviors, they cannot explain the reasons of the behav-
iors. In terms of scaling and resource allocations, several studies
(e.g., NFV-Vital [26], Sandpiper [59], CloudScale [57]) specifically
monitor the utilization of multiple hardware resources. However,
their views are highly limited to application-related metrics. On the
other hand, the goal of the Probius system is to provide the compre-
hensive view of VNFs and service chains with the NFV architectural
characteristics. Thus, not only can Probius point out the suspects
of performance issues, but also it can explain the reasons of the
performance issues in the comprehensive view of VNFs and their
service chains on the basis of NFV architectural characteristics.

11 CONCLUSION
While previous studies have significantly improved the perfor-
mance of NFV environments, network operators still face unex-
pected performance issues - performance uncertainty. In this work,
we introduce Probius, a performance analysis system that automat-
ically extracts all meaningful performance features from the NFV
architecture, and discovers the reasons of performance problems.
For this, Probius collects specific features from all NFV entities
and sorts out performance anomaly through statistical regression
approaches. To point out the root causes of the problems, it newly
adopts the behavior analysis of VNFs on the basis of the NFV archi-
tectural characteristics. To show its practicality, we utilize Probius
to analyze the various kinds of service chains with 7 open-source
VNFs. From the analysis results, we could find several interesting
performance issues caused by the NFV environmental factors ac-
cording to what kinds of VNFs are deployed and how VNFs are
chained. We believe that the Probius system would be greatly help-
ful for network operators to understand performance issues in real
NFV environments.

ACKNOWLEDGEMENT
This work has been supported by the Future Combat System Net-
work Technology Research Center program of Defense Acquisi-
tion Program Administration and Agency for Defense Develop-
ment.(UD160070BD)

REFERENCES
[1] Emerging Threats Open Rulesets. https://rules.emergingthreats.net. (online, 2018.

02.).
[2] Ftrace: Linux Kernel Internal Tracer. https://www.kernel.org/doc/

Documentation/trace/ftrace.txt. (online, 2018. 02.).
[3] GNU Profiler. https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/

gprof.html. (online, 2018. 02.).

https://rules.emergingthreats.net
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html

Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFVSOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

[4] iPerf: The TCP, UDP and SCTP Network Bandwidth Measurement Tool. https:
//iperf.fr. (online, 2018. 02.).

[5] Java Profiler. https://www.ej-technologies.com/products/jprofiler/overview.html.
(online, 2018. 02.).

[6] Linux Perf. https://perf.wiki.kernel.org/index.php/Main_Page. (online, 2018. 02.).
[7] Netfilter/iptables Project. https://www.netfilter.org. (online, 2018. 02.).
[8] Netsniff-ng: A Free Linux Networking Toolkit. http://netsniff-ng.org. (online,

2018. 02.).
[9] NumPy. http://www.numpy.org. (online, 2018. 02.).
[10] OpenStack. https://www.openstack.org. (online, 2018. 02.).
[11] pandas: Python Data Analysis Library. http://pandas.pydata.org. (online, 2018.

02.).
[12] Performance Events in the KVM Kernel Module. http://www.linux-kvm.org/

page/Perf_events. (online, 2018. 02.).
[13] PSUtil: A Cross-platform Library for Process and System Utilities. https://github.

com/giampaolo/psutil. (online, 2018. 02.).
[14] Snort: Network Intrusion Detection & Prevention System. https://www.snort.org.

(online, 2018. 02.).
[15] Snort v2.9 Rules for Registered Users. https://www.snort.org/downloads/

#rule-downloads. (online, 2018. 02.).
[16] SQLite. https://www.sqlite.org. (online, 2018. 02.).
[17] StatsModels: Statistics in Python. http://www.statsmodels.org/stable/index.html.

(online, 2018. 02.).
[18] Suricata: Open Source IDS / IPS / NSM Engine. https://suricata-ids.org. (online,

2018. 02.).
[19] TCPDUMP: A Packet Analyzer. http://www.tcpdump.org. (online, 2018. 02.).
[20] Trace-cmd: A User-space Front-end Command-line Tool for Ftrace. https://git.

kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git. (online, 2018. 02.).
[21] James W Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vah-

dat. 2012. xOMB: Extensible Open Middleboxes with Commodity Servers. In
Proceedings of the ACM/IEEE symposium on Architectures for networking and
communications systems. ACM.

[22] ATTO Research. Athene: Software-defined Elastic NFV Platform. http://www.
atto-research.com/en/solutions/athene. (online, 2018. 02.).

[23] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of
Virtualization. In ACM SIGOPS Operating Systems Review. ACM.

[24] Kenneth A Bollen and Robert W Jackman. 1985. Regression Diagnostics: An
Expository Treatment of Outliers and Influential Cases. Sociological Methods &
Research (1985).

[25] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver Niehörster, and André
Brinkmann. 2010. Non-intrusive Virtualization Management using libvirt. In
Proceedings of the Conference on Design, Automation and Test in Europe. European
Design and Automation Association.

[26] Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. 2015. NFV-Vital: A
Framework for Characterizing the Performance of Virtual Network Functions. In
IEEE Conference on Network Function Virtualization and Software Defined Network.
IEEE.

[27] R Dennis Cook. 1979. Influential Observations in Linear Regression. J. Amer.
Statist. Assoc. (1979).

[28] Tiago de Paula Peixoto. graph-tool: Efficient Network Analysis. https://
graph-tool.skewed.de. (online, 2018. 02.).

[29] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. 2014. Perfor-
mance Characteristics of Virtual Switching. In IEEE International Conference on
Cloud Networking. IEEE.

[30] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. 2015. mSwitch: A
Highly-Scalable, Modular Software Switch. In Proceedings of the ACM Symposium
on Software Defined Networking Research. ACM.

[31] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K Panda. 2006. A Case
for High Performance Computing with Virtual Machines. In Proceedings of the
Annual International Conference on Supercomputing. ACM.

[32] Jinho Hwang, KK Ramakrishnan, and Timothy Wood. 2014. NetVM: High Perfor-
mance and Flexible Networking using Virtualization on Commodity Platforms.
In Proceedings of the USENIX Conference on Networked Systems Design and Imple-
mentation. USENIX Association.

[33] Intel. DPDK. http://dpdk.org. (online, 2018. 02.).
[34] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:

the Linux Virtual Machine Monitor. In Linux Symposium.
[35] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen, and

Calton Pu. 2007. An Analysis of Performance Interference Effects in Virtual En-
vironments. In IEEE International Symposium on Performance Analysis of Systems
& Software. IEEE.

[36] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click Modular Router. ACM Transactions on Computer Systems (2000).

[37] KVM. VhostNet. https://www.linux-kvm.org/page/UsingVhost. (online, 2018.
02.).

[38] John Levon and Philippe Elie. Oprofile: A System Profiler for Linux. (2004).

[39] Holger Karl Manuel Peuster. 2016. Understand Your Chains: Towards Perfor-
mance Profile-based Network Service Management. In European Workshop on
Software Defined Networks. IEEE.

[40] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. In Proceedings of the USENIX Conference on Networked Systems
Design and Implementation. USENIX Association.

[41] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Commu-
nication Review (2008).

[42] Yiduo Mei, Ling Liu, Xing Pu, Sankaran Sivathanu, and Xiaoshe Dong. 2013.
Performance Analysis of Network I/O Workloads in Virtualized Data Centers.
IEEE Transactions on Services Computing (2013).

[43] Priyanka Naik, Dilip Kumar Shaw, andMythili Vutukuru. [n. d.]. NFVPerf: Online
Performance Monitoring and Bottleneck Detection for NFV. ([n. d.]).

[44] Ruslan Nikolaev and Godmar Back. 2011. Perfctr-xen: A Framework for Perfor-
mance Counter Virtualization. In ACM SIGPLAN Notices. ACM.

[45] NTOP. PF_RING. http://www.ntop.org/products/packet-capture/pf_ring. (online,
2017. 2018. 02.).

[46] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Framework for NFV Ap-
plications. In Proceedings of the ACM Symposium on Operating Systems Principles.
ACM.

[47] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. 2015. The
Design and Implementation of Open vSwitch. In Proceedings of the USENIX
Conference on Networked Systems Design and Implementation.

[48] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, Calton Pu,
and Yuanda Cao. 2013. Who is your neighbor: Net I/O Performance Interference
in Virtualized Clouds. IEEE Transactions on Services Computing (2013).

[49] Kaushik Kumar Ram, Alan L Cox, Mehul Chadha, Scott Rixner, and TW Barr.
2013. Hyper-Switch: A Scalable Software Virtual Switching Architecture. In
USENIX Annual Technical Conference. USENIX Association.

[50] Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In USENIX
Security Symposium. USENIX Association.

[51] Luigi Rizzo and Giuseppe Lettieri. 2012. Vale: A Switched Ethernet for Virtual
Machines. In Proceedings of the International Conference on Emerging Networking
Experiments and Technologies. ACM.

[52] Raphael Vicente Rosa, Christian Esteve Rothenberg, and Robert Szabo. 2015.
VBaaS: VNF Benchmark-as-a-service. In European Workshop on Software Defined
Networks. IEEE.

[53] Rubicon Communications, LLC. pfSense: Open Source Firewall. https://www.
pfsense.org. (online, 2018. 02.).

[54] Rusty Russell. 2008. virtio: Towards A De-facto Standard for Virtual I/O Devices.
ACM SIGOPS Operating Systems Review (2008).

[55] SDxCentral. SDN and NFV Market Size and Forecast Report 2015. https://www.
sdxcentral.com/reports/sdn-nfv-market-size-forecast-report-2015. (online, 2018.
02.).

[56] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi.
2012. Design and Implementation of a Consolidated Middlebox Architecture. In
Proceedings of the USENIX conference on Networked Systems Design and Imple-
mentation. USENIX Association.

[57] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
scale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In Proceedings of
the ACM Symposium on Cloud Computing. ACM.

[58] VyOS Project. VyOS: An Open Source Router Operating System. https://vyos.io.
(online, 2018. 02.).

[59] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. 2009.
Sandpiper: Black-box and Gray-box Resource Management for Virtual Machines.
Computer Networks (2009).

[60] Tianlong Yu, Shadi Abdollahian Noghabi, Shachar Raindel, Hongqiang Harry
Liu, Jitu Padhye, and Vyas Sekar. 2016. FreeFlow: High Performance Container
Networking. In Proceedings of the workshop on Hot topics in Networks.

[61] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire
Todeschi, KK Ramakrishnan, and Timothy Wood. 2016. OpenNetVM: A Platform
for High Performance Network Service Chains. In Proceedings of the workshop on
Hot topics in Middleboxes and Network Function Virtualization. ACM.

https://iperf.fr
https://iperf.fr
https://www.ej-technologies.com/products/jprofiler/overview.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.netfilter.org
http://netsniff-ng.org
http://www.numpy.org
https://www.openstack.org
http://pandas.pydata.org
http://www.linux-kvm.org/page/Perf_events
http://www.linux-kvm.org/page/Perf_events
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
https://www.snort.org
https://www.snort.org/downloads/#rule-downloads
https://www.snort.org/downloads/#rule-downloads
https://www.sqlite.org
http://www.statsmodels.org/stable/index.html
https://suricata-ids.org
http://www.tcpdump.org
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git
http://www.atto-research.com/en/solutions/athene
http://www.atto-research.com/en/solutions/athene
https://graph-tool.skewed.de
https://graph-tool.skewed.de
http://dpdk.org
https://www.linux-kvm.org/page/UsingVhost
http://www.ntop.org/products/packet-capture/pf_ring
https://www.pfsense.org
https://www.pfsense.org
https://www.sdxcentral.com/reports/sdn-nfv-market-size-forecast-report-2015
https://www.sdxcentral.com/reports/sdn-nfv-market-size-forecast-report-2015
https://vyos.io

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 NFV Architecture and Bottleneck Points
	2.2 Challenges in Existing Analysis Methods
	2.3 Motivating Examples
	2.4 Our Approach

	3 System Design
	3.1 Probius Architecture
	3.2 Probius Configurations

	4 Examination of NFV Environments
	4.1 VNF Workflow with a Hypervisor
	4.2 VNF Workflow in a Service Chain

	5 Performance Feature Collection
	5.1 Performance Features
	5.2 Monitoring and tracing VNFs

	6 Analysis of Performance Issues
	6.1 Prerequisite for Analysis
	6.2 Performance Anomaly Detection
	6.3 Behavior Analysis of Suspicious VNFs

	7 Implementation
	8 Use Cases
	8.1 VNF analysis
	8.2 Service chain analysis

	9 System Evaluation
	10 Related Work
	11 Conclusion
	References

