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What Happens Inside a (Programmable) Switch?

• Packets are modified in the switch
• Multiple pipelines

• Access Control List (ACL) drops
• Queues cause delays and loss

Ingress

Queues

Egress
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Prior Systems Don’t Peek Inside
• Switch monitoring is important
• Want to adapt dataflow monitoring systems
• map, filter, reduce operators on incoming tuples

• Prior systems only captured packets as they arrived 
at a switch[1,3]
• Or only provide queuing delay info[2]
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Ingress

Queues

EgressSwitch Pipeline

[1] Sonata (SIGCOMM ‘18), [2] Marple (SIGCOMM ‘17), [3] Gigascope (SIGMOD ‘03) 



Introducing PacketScope
• Monitoring the packet lifecycle
• Packet modifications
• ACL drops
• Queuing delays/loss

Ingress

Switch 
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+ 
Queues

EgressQueues
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Ingress
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The Life of a Packet

port_in,
headers_in,

time_in
port_intent,
headers_mid queuing _in/_out

(length, time)

port_out,
headers_out

(Could be modified/
dropped!)
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(Could be delayed!)
(Could be modified/

dropped!)

Ingress() tuples

Egress() tuples



undropped_SSH_NAT = egress()
.filter(tcp.srcPort_in == 22)
.filter(ipv4.srcIP_in != ipv4.srcIP_out)
.filter(port_out != -1)

1
2
3
4

Example Query
• Count un-dropped SSH packets that traverse a NAT

SSH Packets

Crossing a NAT

Not Dropped
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Not Lost



• Loss happens outside ingress/egress processing
• We can’t insert processing to capture packet

• Cannot execute query on individual packet tuples
• But over time, we can track aggregate counts by keeping state

• .lost(groupby_fields, epoch_ms) operator
• count packets grouped by groupby_fields every epoch_ms

• Arrival time determines epoch placement

How To Track Queuing Loss?

Ingress

Queues

X
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Ingress

Switch 
Fabric 

+ 
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Compilation: “Tag Little, Compute Early”

E.g. Queries across ports?
.filter(ipv4.srcIP_in != ipv4.srcIP_out)

A: Tag packet with metadata

Packet:
ipv4.srcIP = X

Metadata: 
ipv4.srcIP_in = X

Packet:
ipv4.srcIP = Y
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Packet:
ipv4.srcIP = ??

Execute



Ingress

Switch 
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Compilation:“Tag Little, Compute Early”

Where to place computation?
.filter(ipv4.srcIP_in != ipv4.srcIP_mid)…

A: As early as possible!

Packet
ipv4.srcIP = X
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Metadata:
ipv4.srcIP_in

Metadata:Metadata:
?
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Compilation:“Tag Little, Compute Early”

Where to place computation?
.filter(ipv4.srcIP_in != ipv4.srcIP_mid)…

A: As early as possible!
• Metadata can be reused for future processing.

Packet:
ipv4.srcIP = Y
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Execute

Metadata:
ipv4.srcIP_in

Metadata:



How To Compile Lost Operator?

Ingress

Queues

X
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• .lost([ipv4.srcIP], 10ms)

• Compile as a join of two queries:
• Count by ipv4.srcIP on ingress
• Count by ipv4.srcIP on egress

• Report difference every 10ms of packet arrival times

• Gory details in paper

Egress

State State
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PacketScope Prototype

• We built a prototype[1] in Python and P4 with:
• Support for packet modifications, queuing delays
• Tag little, compute early compilation

• We also built a queuing loss query prototype
• Uses the BMv2 software model

• More details and future work in paper

17[1] As an extension to Sonata (SIGCOMM ‘18)



Conclusion

• PacketScope is a network telemetry system
• Using a dataflow programming model (map, filter, reduce)
• That supports queries on the full packet lifecycle:

• Packet modifications
• ACL drops
• Queuing delays/loss

• And compiles efficiently to programmable switches
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