
PacketScope: Monitoring the Packet 
Lifecycle Within a Switch

Ross Teixeira (Princeton)
Rob Harrison (United States Military Academy)

Arpit Gupta (UC Santa Barbara)
Jennifer Rexford (Princeton)



Outline

1. Peeking Inside the Switch

2. Packet Lifecycle Query Language

3. Efficient Query Compilation

4. PacketScope Prototype

2



Outline

1. Peeking Inside the Switch

2. Packet Lifecycle Query Language

3. Efficient Query Compilation

4. PacketScope Prototype

3



What Happens Inside a (Programmable) Switch?

• Packets are modified in the switch
• Multiple pipelines

• Access Control List (ACL) drops
• Queues cause delays and loss

Ingress

Queues

Egress

4



Prior Systems Don’t Peek Inside
• Switch monitoring is important
• Want to adapt dataflow monitoring systems
• map, filter, reduce operators on incoming tuples

• Prior systems only captured packets as they arrived 
at a switch[1,3]
• Or only provide queuing delay info[2]

5

Ingress

Queues

EgressSwitch Pipeline

[1] Sonata (SIGCOMM ‘18), [2] Marple (SIGCOMM ‘17), [3] Gigascope (SIGMOD ‘03) 



Introducing PacketScope
• Monitoring the packet lifecycle
• Packet modifications
• ACL drops
• Queuing delays/loss

Ingress

Switch 
Fabric 

+ 
Queues

EgressQueues

6



Outline

1. Peeking Inside the Switch

2. Packet Lifecycle Query Language

3. Efficient Query Compilation

4. PacketScope Prototype

7



Ingress

Switch 
Fabric 

+ 
Queues

EgressQueues

The Life of a Packet

port_in,
headers_in,

time_in
port_intent,
headers_mid queuing _in/_out

(length, time)

port_out,
headers_out

(Could be modified/
dropped!)

8

(Could be delayed!)
(Could be modified/

dropped!)

Ingress() tuples

Egress() tuples



undropped_SSH_NAT = egress()
.filter(tcp.srcPort_in == 22)
.filter(ipv4.srcIP_in != ipv4.srcIP_out)
.filter(port_out != -1)

1
2
3
4

Example Query
• Count un-dropped SSH packets that traverse a NAT

SSH Packets

Crossing a NAT

Not Dropped

9

Not Lost



• Loss happens outside ingress/egress processing
• We can’t insert processing to capture packet

• Cannot execute query on individual packet tuples
• But over time, we can track aggregate counts by keeping state

• .lost(groupby_fields, epoch_ms) operator
• count packets grouped by groupby_fields every epoch_ms

• Arrival time determines epoch placement

How To Track Queuing Loss?

Ingress

Queues

X

10



Outline

1. Peeking Inside the Switch

2. Packet Lifecycle Query Language

3. Efficient Query Compilation

4. PacketScope Prototype

11



Ingress

Switch 
Fabric 

+ 
Queues

EgressQueues

Compilation: “Tag Little, Compute Early”

E.g. Queries across ports?
.filter(ipv4.srcIP_in != ipv4.srcIP_out)

A: Tag packet with metadata

Packet:
ipv4.srcIP = X

Metadata: 
ipv4.srcIP_in = X

Packet:
ipv4.srcIP = Y

12

Packet:
ipv4.srcIP = ??

Execute



Ingress

Switch 
Fabric 

+ 
Queues

EgressQueues

Compilation:“Tag Little, Compute Early”

Where to place computation?
.filter(ipv4.srcIP_in != ipv4.srcIP_mid)…

A: As early as possible!

Packet
ipv4.srcIP = X

13

Metadata:
ipv4.srcIP_in

Metadata:Metadata:
?



Ingress

Switch 
Fabric 

+ 
Queues

EgressQueues

Compilation:“Tag Little, Compute Early”

Where to place computation?
.filter(ipv4.srcIP_in != ipv4.srcIP_mid)…

A: As early as possible!
• Metadata can be reused for future processing.

Packet:
ipv4.srcIP = Y

14

Execute

Metadata:
ipv4.srcIP_in

Metadata:



How To Compile Lost Operator?

Ingress

Queues

X

15

• .lost([ipv4.srcIP], 10ms)

• Compile as a join of two queries:
• Count by ipv4.srcIP on ingress
• Count by ipv4.srcIP on egress

• Report difference every 10ms of packet arrival times

• Gory details in paper

Egress

State State



Outline

1. Peeking Inside the Switch

2. Packet Lifecycle Query Language

3. Efficient Query Compilation

4. PacketScope Prototype

16



PacketScope Prototype

• We built a prototype[1] in Python and P4 with:
• Support for packet modifications, queuing delays
• Tag little, compute early compilation

• We also built a queuing loss query prototype
• Uses the BMv2 software model

• More details and future work in paper

17[1] As an extension to Sonata (SIGCOMM ‘18)



Conclusion

• PacketScope is a network telemetry system
• Using a dataflow programming model (map, filter, reduce)
• That supports queries on the full packet lifecycle:

• Packet modifications
• ACL drops
• Queuing delays/loss

• And compiles efficiently to programmable switches

Ingress

Switch 
Fabric 

+ 
Queues

EgressQueues


