Constructions and Applications for Accurate Counting of the Bloom Filter False Positive Free Zone

<table>
<thead>
<tr>
<th>Ori Rottenstreich</th>
<th>Pedro Reviriego</th>
<th>Ely Porat</th>
<th>S. Muthukrishnan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technion</td>
<td>Uni. Carlos III de Madrid</td>
<td>Bar Ilan</td>
<td>Rutgers Uni.</td>
</tr>
</tbody>
</table>

ACM Symposium on SDN Research (SOSR), March 3, 2020
Set representation: Support queries of the form: Is $Flow\ y \in set\ S$?

Flow size estimation:
How many observed packets of $Flow\ y$?

- Requirements for data structure:
 - Space efficient
 - Fast (Update, Query)

Can tasks be supported accurately?
Set Representation - Naïve Solutions

Is $y \in S$?

- $O(|S|)$ – Searching in a list
- $O(\log(|S|))$ – Searching in a sorted list
- $O(1)$?
 - Tradeoff: Errors occur with low probability

- Two possible errors
 - False Positives - $y \notin S$ but the answer is $y \in S$.
 - False Negatives - $y \in S$ but the answer is $y \notin S$.

Set S
(Special Flows)
Bloom Filters (Bloom, 1970)

- Initialization: Array of m zero bits

 \[
 \begin{array}{cccccccccccccc}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{array}
 \]

- Insertion: Each of the $|S|$ elements is hashed k times, the corresponding bits are set

 \[
 S=\{x,y\}
 \]

- Query: Hashing the element, checking that all k bits are set

- No false negatives

- False positive rate (probability) $\text{FPR} \approx (0.6185)^{m/|S|}$
 - Controlled by the memory allocation but always positive
 - Can we completely avoid false positives?

- Bloom Filters (Bloom, 1970)
The Bloom filter principal:
Wherever a set is used and space is a concern, consider using a Bloom filter if the effect of false positives can be mitigated

- Cache/Memory Framework
- Packet Classification
- Intrusion Detection
- Routing
- Accounting
- Beyond networking: Spell Checking, DNA Classification

Can be found in
- Google's web browser Chrome
- Google's database system BigTable
- Facebook's distributed storage system Cassandra
- Mellanox's IB Switch System
- Blockchain systems: Bitcoin and Ethereum
Application example:
In Packet Bloom filters

Multicast addressing

- No states in the routers
- Finite universe of possible links, short paths
- Path = Set of links
- Forwarding decision based on a membership query

Rome $
ightarrow$ Milan
Milan $
ightarrow$ Zurich
Milan $
ightarrow$ Munich

Link ID:
- Rome→Milan: 0 1 0 0 0 1 0
- Milan→Zurich: 1 0 0 0 0 1 0
- Milan→Munich: 0 1 0 0 0 0 1

Packet header

Bloom filter:

False positive: a packet is forwarded on an extra link

Can cause infinite loops!

Application example: Blockchain Technology

Light Clients in Bitcoin and Ethereum

- Interested in a small subset of accounts (addresses)
- A full client holds a Bloom filter of the addresses,
 Only relevant traffic is forwarded to the light client
- False positive: Redundant forwarded traffic

- Finite universe: The set of all active addresses
- Typically small sets of accounts in a light client

Avoiding False positives

- Only possible when the universe of elements is finite
- We define conditions, under which the filter is guaranteed to avoid false positives
 - Requirements:
 - The size of S is at most d
 - The elements inserted are from $U = \{1, \ldots, n\}$
 - Boundaries of the False Positive Free Zone

False positive free zone:
For a given memory size m, smaller universe size n allows more elements in a set d
Intuition for the False Positive Free Zone

- Input:
 - Universe \(U = \{1, \ldots, n\} \)
 - No false positives for \(|S| \leq d\)

- Carefully design the hash function (selected bits for each element) so that:
 - Given any set of size at most \(d \):
 - Every element not in the set maps to at least one bit of 0
 - False positives cannot occur

- The existing construction has memory complexity of \(O(d^2 \log n) \)
- Cannot scale well for allowing large maximal set size \(d \)
Outline

• Introduction to Bloom filter
• The false positive free zone
• Existing Scheme – EGH filter
• New Scalable Schemes – OLS filter and POL filter
• CM Sketch – Application for accurate flow size estimation
• Summary
Existing Scheme: The EGH Filter

- Combinatorial group testing technique
 - Based on Chinese Remainder Theorem
- Input:
 - Universe \(U = \{1, \ldots, n\} \)
 - At most \(d \) elements in the filter
- Select the \(k \) first primes 2, 3, 5, \ldots, \(p_k \) so that \(2 \times 3 \times 5 \times \ldots \times p_k > n^d \)
- The EGH filter is \(2 + 3 + 5 + \ldots + p_k \) bits long, composed of \(k \) blocks
- No false positives for \(|S| \leq d \)
- Memory Complexity of \(O(d^2 \log n) \)

\[
\begin{array}{cccccc}
2 & 3 & 5 & 7 \\
x=1 & 0 & 1 & 0 & 1 & 0 & 0 \\
x=9 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

EGH Filter Example

- $U = \{1, \ldots, n=48\}$, $d = 2$
- A 2-disjunct matrix with $n=48$ columns, $m=28$ lines
- $m = 28 = 2 + 3 + 5 + 7 + 11$ bits
- Simple five hash functions:
 - $h_1(x) = x \mod 2$,
 - $h_2(x) = x \mod 3 + 2$,
 - $h_3(x) = x \mod 5 + 5$,
 - $h_4(x) = x \mod 7 + 10$,
 - $h_5(x) = x \mod 11 + 17$
Scalability for Large Sets

- Memory Complexity of existing scheme $O(d^2 \log n)$
- Grows quadratically with maximal set size d
- Cannot scale well for representing large sets

- Larger sets can be useful, eg, for
 - Larger caches
 - Transaction pools for higher transaction rates
 - Encoding paths in networks of larger diameter

- Can the memory complexity scale better to allow larger sets?
- Potentially larger dependency in the universe size n
Based on Orthogonal Latin Square (OLS) Codes

- Previously used to detect and correct errors in memories
- Parity check matrix on which two elements share at most a parity bit

Latin square properties:

- $s \times s$ array
- Each symbol appears exactly once in each row and column
- In our case, symbols are 0, 1, 2, ..., s-1
- A pair of squares is called orthogonal if when superimposed imply all s^2 pairs

Examples for OLS

First scheme: OLS Filter

Additional matrices
First scheme: OLS Filter

- Based on Orthogonal Latin Square (OLS) Codes
 - Previously used to detect and correct errors in memories
 - Parity check matrix on which two elements share at most a parity bit
- Input:
 - Universe $U = \{1, \ldots, n\}$
 - At most d elements in the filter
- Latin squares of size $\sqrt{n} \times \sqrt{n}$
- The filter is divided in $d+1$ groups of size \sqrt{n}
- Each group is based on a matrix: Two simple and additional orthogonal latin squares
- Modular construction on d, more parity groups can be added to increase d
- No false positives for $|S| \leq d$
- Memory Complexity of $(d+1) \cdot \sqrt{n}$
- Scales linearly with maximal set size d
OLS Example:
Universe size \(n = 25 \) (\(\sqrt{n} = 5 \)),
Maximal Set size \(d = 3 \)

- Universe size \(n \), for each element (column) a single bit of 1 in each group
- No false positives for \(|S| \leq d \)
- Filter length = \((d+1)\cdot\sqrt{n}\)
For every element a single bit of 1 in each group, a total of \(d+1 \) bits of 1

Two columns cannot share more than a single one

Given a set of size \(|S| \leq d\), among the \(d+1 \) bits of an element not in the set at least one if not covered by the set elements
Second scheme: POL Filter

Based on Polynomials of degree $t-1$
 - Assumption: $t \sqrt{n} = n^{1/t}$ is a prime number
 - Coefficients belong to $[0, t \sqrt{n} - 1]$

Input:
 - Universe $U = \{1, \ldots, n\}$
 - At most d elements in the filter

Each element y is defined by the polynomial for which

$$P_y(t \sqrt{n}) = \sum_{i=0}^{t-1} a_i \cdot (t \sqrt{n})^i = y$$

Each element y is represented by the values of the polynomial modulo $t \sqrt{n}$ for

$$x \in [0, (t-1) \cdot d]$$

No false positives for $|S| \leq d$
Memory Complexity of $((t-1) \cdot d+1) \cdot t \sqrt{n}$
• Universe size $n = 7^3 = 343$, $t\sqrt{n} = 7$ for parameter $t=3$
• OLS filter length $19(d+1)$
• POL filter length $((t-1) \cdot d+1) \cdot t\sqrt{n} = (2d+1) \cdot 7 = 14d+7$

• For $d = 2$:
 ▪ Number of groups $((t-1) \cdot d+1) = ((3-1) \cdot 2+1) = 5$
 ▪ Each of $t\sqrt{n} = 7$ bits
 ▪ Filter of length $5 \cdot 7 = 35$ bits, five groups of 7 bits

• For each value y among the $n=343$:
 ▪ Compute the polynomial $P_y(x)$ such that $y = P_y(t\sqrt{n} = 7) = a_0+a_1 \cdot 7+a_2 \cdot 7^2+a_3 \cdot 7^3+…$
 ▪ Compute vector of five groups based on values $P_y(x)$ for $x=0,1,2,3,4$

• Examples:
 ▪ For $y = 7 = t\sqrt{n}$, Polynomial $P_y(x) = x$
 $$(1000000 0100000 0010000 0001000 0000100)$$
 ▪ For $y = 50 = 7^2+1=(t\sqrt{n})^2+1$, Polynomial $P_y(x) = x^2+1$
 $$(0100000 0010000 0000010 0001000 0001000)$$
Memory Footprint

- Allows better scalability for larger sets (d)
- Results in more expensive dependency in universe size (n)

<table>
<thead>
<tr>
<th>filter</th>
<th>memory complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGH filter</td>
<td>$O(d^2 \cdot \log n)$</td>
</tr>
<tr>
<td>OLS filter</td>
<td>$(d + 1)\sqrt{n}$</td>
</tr>
<tr>
<td>POL filter</td>
<td>$((t - 1) \cdot d + 1) \cdot \sqrt{n}$</td>
</tr>
</tbody>
</table>

![Graphs showing memory footprint for different filters and maximal set sizes](image)
Counting Bloom Filters (CBFs)

- Bloom filters do not support deletions of elements. Simply resetting bits might cause false negatives.

- Counting Bloom filters - Storing array of counters instead of bits.
 - Insertion: Incrementing \(k \) counters by one
 - Deletion: Decrementing \(k \) counters by one
 - Query: Checking that \(k \) counters are positive

- The same false positive probability
- Require more memory – usually x4
- The false positive free zone applies also to Counting Bloom filters
Accurate Flow Size Estimation

Count Min Sketch [Cormode and Muthukrishnan, 2005]

• Flow size: Number of packets in a flow
• Increment counter in each appearance

Traditional flow size estimation:
 • Minimal value among counters mapped by the flow
 • Can suffer from overestimation

Accurate Count Min Sketch Idea:
 • Design your hash functions carefully based on the false positive free zone
 • If the number of measured flows is small, it is the only flow in at least one counter
 • Flow size estimation is accurate based on that counter, no overestimation
Accurate Flow Size Estimation
Count Min Sketch

- If we use a Bloom filter with a FPFZ of d for the mappings of flows to counters:
 - Universe size n refers to the number of potential flows
 - No error for active flows when the CMS has $d+1$ or less active flows
 - No error for non active flows when the CMS has d or less active flows

- Total of $n=25$ potential flows with at most 10 flows of a non-zero size. Size of non-zero flows is uniformly distributed in $[1,100]$
Constructions of Accurate Bloom Filters and Accurate Count-Min Sketch

• Bloom filter constructions that avoid false positives
• Apply for a finite universe and scale for large sets
• Applications like: Routing, blockchain, distributed storage

• Accurate flow size estimation
 ▪ Avoiding overestimations in the well known Count-Min Sketch

Questions? Comments?

Ori Rottenstreich (Technion)
sites.google.com/site/orirottenstreich
Email: or@technion.ac.il

Thank you!