Designed by
../epic_logo.gif (359 bytes)
EPIC
SOLUTIONS INTERNATIONAL



SIGCOMM 1998 LOGO Data networks as cascades: Explaining the multifractal nature of Internet WAN traffic
Anja Feldmann, Anna Gilbert, and Walter Willinger (AT&T Labs-Research)

In apparent contrast to the well-documented self-similar (i.e., monofractal) scaling behavior of measured LAN traffic, recent studies have suggested that measured TCP/IP and ATM WAN traffic exhibits more complex scaling behavior, consistent with multifractals. To bring multifractals into the realm of networking, this paper provides a simple construction based on cascades (also known as multiplicative processes) that is motivated by the protocol hierarchy of IP data networks. The cascade framework allows for a plausible physical explanation of the observed multifractal scaling behavior of data traffic and suggests that the underlying multiplicative structure is a traffic invariant for WAN traffic that co-exists with self-similarity. In particular, cascades allow us to refine the previously observed self-similar nature of data traffic to account for local irregularities in WAN traffic that are typically associated with networking mechanisms operating on small time scales, such as TCP flow control.

To validate our approach, we show that recent measurements of Internet WAN traffic from both an ISP and a corporate environment are fully consistent with the proposed cascade paradigm and hence with multifractality. We rely on wavelet-based time-scale analysis techniques to visualize and to infer the scaling behavior of the traces, both globally and locally. We also discuss and illustrate with some examples how this cascade-based approach to describing data network traffic suggests novel ways for dealing with networking problems and helps in building intuition and physical understanding about the possible implications of multifractality on issues related to network performance analysis.


ACM Copyright Notice: Copyright (c) 1998 by Association for Computing Machinery, Inc. (ACM) Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that the copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to publish from: Publications Dept. ACM, Inc. Fax +1 212 869 0481 or email <permissions@acm.org>.

The referenced paper is in Computer Communication Review, a publication of ACM SIGCOMM, volume 28, number 4, October 1998. ISSN # 0146-4833.

This electronic facsimile may differ slighty from the printed version. It has may have been reformated to better support electronic viewing. Therefore, please use the printed version when referencing layout details, such as page numbers.

This paper is available in Postscript and Adobe Portable Document Format (PDF)

Get Acrobat Reader Get Microsoft Powerpoint Viewer, Get Ghostview Ghostview